To do this, you got to square 256.
The square root of 256 is 16.
Therefore, there are 16 small squares on each edge of the mosaic.
Kinda proof:
o o o o O
o o o o O
o o o o O
o o o o O
o o o o O
25 squares. Square root is 5. 5 along each edge. My work shares same concept.
Extremely unnecessary proof:
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
o o o o o o o o o o o o o o o O
There are 256 squares, and you can count 16 on each edge. this shows 16 times 16, or 16 squared, which is 256.
I would try using a table. It might work better.
Α = 1- (95/100) = 1-0.95 = 0.05
p = 1- α/2 = 1- 0.05/2 = 1-0.025 = 0.975
Degrees of freedom, df = Sample size -1 = 11-1 = 10
From t-tables, with cumulative probability pf 0.975 and df of 10,
Critical value = 2.228
As an integer and a raitonal number as well as a real number.
Answer:
1. move the constant to the right hand side to change its sign.
2.add the numbers.
3. using the absolute value definition rewrite the absolute value equation as two separate equations.
4.slove the equation for X
Step-by-step explanation:
it has two solutions
x=8
x= -9
the answer should be X1= 9, x2 =8