9514 1404 393
Answer:
Q = ±2√R
Step-by-step explanation:
Take the square root:
±√R = 1/2Q
Multiply by 2:
Q = ±2√R
Since there are no given sample statistics, Let us use the following: n=35, x=24.1, and o=2.7
2-tail test
Using a T-test:
t(24.1) = (24.1-23/[2.7/sqrt(35)] = -2.4103
P - value = 2*P(-100< t < -1.9720, when df = 34)
= tcdf (-100,-2.4103,34) -> using excel
= 0.0107
Answer:
13.896 kg
Step-by-step explanation:
You can find the mass of the bar by first finding the volume.
V = BH
where B = area of the base (the trapezium), and
H = height (distance trapezium between bases)
The area of a trapezium is
A = (b1 + b2)h/2
where b1 and b2 are the lengths of the bases of the trapezium (the parallel sides), and
h = the altitude of the trapezium (distance between the bases of the trapezium)
V = (b1 + b2)h/2 * H
V = (12 cm + 6 cm)(5 cm)/2 * 16 cm
V = 720 cm^3
The volume of the bar is 720 cm^3.
Now we use the density and the volume to find the mass.
density = mass/volume
mass = density * volume
mass = 19.3 g/cm^3 * 720 cm^3
mass = 13,896 g
Now we convert grams into kilograms.
1 kg = 1000 g
mass = 13,896 g * (1 kg)/(1000 g)
mass = 13.896 kg
Answer: 1.3896 kg
Answer:
Size of |E n B| = 2
Size of |B| = 1
Step-by-step explanation:
<em>I'll assume both die are 6 sides</em>
Given
Blue die and Red Die
Required
Sizes of sets
- 
- 
The question stated the following;
B = Event that blue die comes up with 6
E = Event that both dice come even
So first; we'll list out the sample space of both events


Calculating the size of |E n B|


<em>The size = 3 because it contains 3 possible outcomes</em>
Calculating the size of |B|

<em>The size = 1 because it contains 1 possible outcome</em>