12 is a
13 is b
14 is d
15 is 1 217/1250
<span>Exactly 8*pi - 16
Approximately 9.132741229
For this problem, we need to subtract the area of the square from the area of the circle. In order to get the area of the circle, we need to calculate its radius, which will be half of its diameter. And the diameter will be the length of the diagonal for the square. And since the area of the square is 16, that means that each side has a length of 4. And the Pythagorean theorem will allow us to easily calculate the diagonal. So:
sqrt(4^2 + 4^2) = sqrt(16 + 16) = sqrt(32) = 4*sqrt(2)
Therefore the radius of the circle is 2*sqrt(2).
And the area of the circle is pi*r^2 = pi*(2*sqrt(2)) = pi*8
So the area of the rest areas is exactly 8*pi - 16, or approximately 9.132741229</span>
Let the fist integer be x, the second is x+20
the product of the numbers is:
x(x+20)
the sum of the numbers is:
x+x+20=2x+20
the sum of the above operations will give us:
2x+20+x^2+20x=95
x^2+22x+20=95
this can be written as quadratic to be:
x^2+22x-75=0
solving the above we get:
x=3 and x=-25
but since the integers should be positive, then x=3
the second number is x+20=3+20=23
hence the numbers are:
3 and 23
Well you have to subtract -2 to both sides and it well look like Y= -2+13 and then y=x+4
Members possibly involved must have an equal chance of being used, come from an equivalent background, be individually assigned through a random process, and all complete the study.