1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ratling [72]
3 years ago
8

What is a fifth of 12,000

Mathematics
2 answers:
Anna007 [38]3 years ago
7 0
Regarding this question it can said that there is nothing special about it. Only thing is converting the word one fifth into the number 1/5 and then multiplying it with the total number of 12000.
One fifth of 12000 = (1/5) * 12000
                              = 12000/5
                               = 2400
So 2400 is the one fifth of 12000. Care should be taken while dividing. I hope this is the answer you were looking for and the procedure is perfectly clear to you. In future you can attempt such problems on your own without requiring any kind of outside help. I am glad to have helped you.
Strike441 [17]3 years ago
3 0
12,000* (1/5)= 2,400

The final answer is 2,400~
You might be interested in
A certain city has 126,000 square miles. The population of this city is 683,000 people
Sholpan [36]
Divide the amount of people with the total amount of square miles

683000/126000 = amount of people per square mile

683000/126000 = 5.42, or ~5 people per square mile

5 is your answer

hope this helps
6 0
4 years ago
How do I answer this question?
gavmur [86]
This question answered is corect

3 0
3 years ago
Hayden made 144 ounces of punch for a party. how manypints of punch did she make
Mrac [35]

Answer:

9 Pints

Step-by-step explanation:

All we have to do is turn ounces into pints, just like this:

144x0.625=9

Hence, our answer is 9.

Hayden made 9 Pints of Punch for the party!

Thanks!

7 0
3 years ago
Hi, how do we do this question?​
Nutka1998 [239]

Answer:

\displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{-2(ln|3x + 1| - 3x)}{9} + C

General Formulas and Concepts:

<u>Algebra I</u>

  • Terms/Coefficients
  • Factoring

<u>Algebra II</u>

  • Polynomial Long Division

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals
  • Integration Constant C
  • Indefinite Integrals

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:                                                       \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Logarithmic Integration

U-Substitution

Step-by-step explanation:

*Note:

You could use u-solve instead of rewriting the integrand to integrate this integral.

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int {\frac{2x}{3x + 1}} \, dx

<u>Step 2: Integrate Pt. 1</u>

  1. [Integrand] Rewrite [Polynomial Long Division (See Attachment)]:           \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \int {\bigg( \frac{2}{3} - \frac{2}{3(3x + 1)} \bigg)} \, dx
  2. [Integral] Rewrite [Integration Property - Addition/Subtraction]:               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \int {\frac{2}{3}} \, dx - \int {\frac{2}{3(3x + 1)}} \, dx
  3. [Integrals] Rewrite [Integration Property - Multiplied Constant]:               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}\int {} \, dx - \frac{2}{3}\int {\frac{1}{3x + 1}} \, dx
  4. [1st Integral] Reverse Power Rule:                                                               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{3}\int {\frac{1}{3x + 1}} \, dx

<u>Step 3: Integrate Pt. 2</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 3x + 1
  2. [<em>u</em>] Differentiate [Basic Power Rule]:                                                             \displaystyle du = 3 \ dx

<u>Step 4: Integrate Pt. 3</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}\int {\frac{3}{3x + 1}} \, dx
  2. [Integral] U-Substitution:                                                                               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}\int {\frac{1}{u}} \, du
  3. [Integral] Logarithmic Integration:                                                               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}ln|u| + C
  4. Back-Substitute:                                                                                            \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}ln|3x + 1| + C
  5. Factor:                                                                                                           \displaystyle \int {\frac{2x}{3x + 1}} \, dx = -2 \bigg( \frac{1}{9}ln|3x + 1| - \frac{x}{3}  \bigg) + C
  6. Rewrite:                                                                                                         \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{-2(ln|3x + 1| - 3x)}{9} + C

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

8 0
3 years ago
Молю :с
katrin [286]

Answer:

1) -5.25

2) -1.21525

Step-by-step explanation:

Я действительно не знаю, как это объяснить, мой друг сделал это. Я знаю английский, и это из Google Translate

3 0
3 years ago
Other questions:
  • A pet store uses a total of 72 liters of water to fill its aquariums. Each aquarium holds 9 liters.
    6·2 answers
  • A restaurant sells 158 chicken finger plates. If each plate has 4 chicken fingers, how many total chicken fingers do they sell?
    5·1 answer
  • Describe the transformation done to y=1/x to get y=1/4x-12.<br><br> Please Show Work.
    11·1 answer
  • How does 4D shape look like?
    5·2 answers
  • 144 is what percent of 200?.?.?
    7·2 answers
  • -10 less than or equal to 3x-4 less than 8
    8·1 answer
  • I have some of these answers trying to see if I got them right
    8·1 answer
  • I GIVE BRAILILSET\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
    9·1 answer
  • 0.02x+x Simplify the expression
    12·2 answers
  • 1. Kristín is driving on the highway at 100 kilometers per hour. How long will it take Kristin to reach a rest area
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!