The classification would be a right triangle
Answer:
The third quartile is:

Step-by-step explanation:
First organize the data from lowest to highest
4, 5, 10, 12, 14, 16, 18, 20, 21, 21, 22, 22, 24, 26, 29, 29, 33, 34, 43, 44
Notice that we have a quantity of n = 20 data
Use the following formula to calculate the third quartile 
For a set of n data organized in the form:

The third quartile is
:

With n=20


The third quartile is between
and 
Then


Answer:
the x axis is 10, its interpretation is actually G, so on a graph instead of X and Y you would have G and T
Answer:
a. We reject the null hypothesis at the significance level of 0.05
b. The p-value is zero for practical applications
c. (-0.0225, -0.0375)
Step-by-step explanation:
Let the bottles from machine 1 be the first population and the bottles from machine 2 be the second population.
Then we have
,
,
and
,
,
. The pooled estimate is given by
a. We want to test
vs
(two-tailed alternative).
The test statistic is
and the observed value is
. T has a Student's t distribution with 20 + 25 - 2 = 43 df.
The rejection region is given by RR = {t | t < -2.0167 or t > 2.0167} where -2.0167 and 2.0167 are the 2.5th and 97.5th quantiles of the Student's t distribution with 43 df respectively. Because the observed value
falls inside RR, we reject the null hypothesis at the significance level of 0.05
b. The p-value for this test is given by
0 (4.359564e-10) because we have a two-tailed alternative. Here T has a t distribution with 43 df.
c. The 95% confidence interval for the true mean difference is given by (if the samples are independent)
, i.e.,
where
is the 2.5th quantile of the t distribution with (25+20-2) = 43 degrees of freedom. So
, i.e.,
(-0.0225, -0.0375)
168 :)
This is because an integer is a whole number, so the largest integer value that is less than 169 has to be 168