The events are not mutually exclusive because P(A or B) is not equal to P(A) + P(B)
<h3>Why are the events not mutually exclusive?</h3>
The probability values are given as:
P(A) = 0.3
P(B) = 0.6
P(A or B) = 0.8
For mutually exclusive events, we have:
P(A or B) = P(A) + P(B)
Substitute the known values in the above equation
P(A or B) = 0.3 + 0.6
Evaluate the sum
P(A or B) = 0.9
From the given parameters, we have
P(A or B) = 0.8
Hence, the events are not mutually exclusive because P(A or B) is not equal to P(A) + P(B)
Read more about probability at
brainly.com/question/25870256
#SPJ1
I haven’t really learned this but I think it’s the second one! :)
Answer:
128,158 hectáreas
Step-by-step explanation:
Aquí, en esta pregunta, nos interesa calcular las hectáreas totales de trigo que se sembraron entre los tres estados.
Para calcular esto, simplemente sumamos las hectáreas de trigo que se sembraron en cada uno de los estados.
Matemáticamente;
Eso sería; 84,092 + 42,634 + 1,432 = 128,158 hectáreas
5+2x2x2÷4-2
= 5+[(2x2x2)÷4]-2
= 5 + [8 ÷4 ] -2
= 5 + 2 - 2
= 5
25 is the greatest common factor of 75 and 25. 3 x 25 = 75.