Answer:
carbohydrates are important in the body because they contribute to the body's ability to produce ATP
Answer:
Explanation: Despite the affluence, there is still inequity. Increasing and deliberate inequity at that, for it is a necessary feature of a growth economy and the driver of material self-advancement. Desirable though high standards of living may be, there are finite global limits.
Answer:
(a) Microfilaments
(b) Microtubules
(c) Microtubules
(d) Microfilaments
(e) Intermediate filaments
(f) Microfilaments, intermediate filaments, microtubules
(g) Microfilaments, microtubules
(h) Microfilaments, intermediate filaments, microtubules
(i) Microtubules, microfilaments
(j) Microtubules
Explanation:
Microtubules (MTs) are dimers of the protein tubulin (alpha- and beta-tubulin subunits) and they are major components of the cytoskeleton. MTs play diverse cellular roles including, mechanical support (cytoskeleton), transport, motility, chromosome segregation, etc. Microfilaments (MFs) are protein filaments that also form part of the cytoskeleton in eukaryotic cells. MFs consist of G-actin monomers assembled in linear actin polymers, and their functions include mechanical support, cytokinesis, changes in cell shape, amoeboid movement, endocytosis and exocytosis, etc. MFs associate with the protein myosin to generate muscle contractions. Actin filaments/MTs assembly from monomeric actin/tubulin is caused due to energy expenditure, where ATP/GTP bound to actin/tubulin is hydrolyzed during polymerization. Finally, intermediate filaments (IFs) are a type of cytoskeletal element composed of a heterogeneous group of structural elements, and they are not found in all eukaryotes. The primary function of the IFs is to contribute to the mechanical support for the plasma membrane where these filaments come into contact with other cells and/or with the extracellular matrix. The IFs are not directly involved in cell movement. All 3 types of cytoskeletal elements (microfilaments, intermediate filaments, microtubules) can be visualized by fluorescence microscopy when cells express chimeric MT/IF/MF.–GFP fusion proteins.
Answer:
Mesophyll is not a tissue technically speaking. It's just a place, a specific area. Or you can even think of it as the set of all tissues in a given area.
Weather is short period climate is over a period of years