1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Solnce55 [7]
3 years ago
14

If Container A weighs 3 pounds Container B weighs 5 pounds Container C weighs 3.5 pounds and Container D weighs 2.75 pounds what

is the total weight of these four containers? 
Mathematics
1 answer:
andriy [413]3 years ago
4 0
You have to add all the containers together in order to get the total weight.
3+5
8+3.5
11.5+2.75
14.25 
So, the total weight of the four containers is 14.25 pounds.
You might be interested in
12. Find the value of x.
Ivanshal [37]
6 is the value of x in this
5 0
4 years ago
Please help me to prove this!​
Sophie [7]

Answer:  see proof below

<u>Step-by-step explanation:</u>

Given: A + B = C                → A = C - B

                                          → B = C - A

Use the Double Angle Identity:     cos 2A = 2 cos² A - 1

                                             → (cos 2A + 1)/2 = cos² A

Use Sum to Product Identity: cos A + cos B = 2 cos [(A + B)/2] · 2 cos [(A - B)/2]

Use Even/Odd Identity: cos (-A) = cos (A)

<u>Proof LHS → RHS:</u>

LHS:                     cos² A + cos² B + cos² C

\text{Double Angle:}\qquad \dfrac{\cos 2A+1}{2}+\dfrac{\cos 2B+1}{2}+\cos^2 C\\\\\\.\qquad \qquad \qquad =\dfrac{1}{2}\bigg(2+\cos 2A+\cos 2B\bigg)+\cos^2 C\\\\\\.\qquad \qquad \qquad =1+\dfrac{1}{2}\bigg(\cos 2A+\cos 2B\bigg)+\cos^2 C

\text{Sum to Product:}\quad 1+\dfrac{1}{2}\bigg[2\cos \bigg(\dfrac{2A+2B}{2}\bigg)\cdot \cos \bigg(\dfrac{2A-2B}{2}\bigg)\bigg]+\cos^2 C\\\\\\.\qquad \qquad \qquad =1+\cos (A+B)\cdot \cos (A-B)+\cos^2 C

\text{Given:}\qquad \qquad 1+\cos C\cdot \cos (A-B)+\cos^2C

\text{Factor:}\qquad \qquad 1+\cos C[\cos (A-B)+\cos C]

\text{Sum to Product:}\quad 1+\cos C\bigg[2\cos \bigg(\dfrac{A-B+C}{2}\bigg)\cdot \cos \bigg(\dfrac{A-B-C}{2}\bigg)\bigg]\\\\\\.\qquad \qquad \qquad =1+2\cos C\cdot \cos \bigg(\dfrac{A+(C-B)}{2}\bigg)\cdot \cos \bigg(\dfrac{-B-(C-A)}{2}\bigg)

\text{Given:}\qquad \qquad =1+2\cos C\cdot \cos \bigg(\dfrac{A+A}{2}\bigg)\cdot \cos \bigg(\dfrac{-B-B}{2}\bigg)\\\\\\.\qquad \qquad \qquad =1+2\cos C \cdot \cos A\cdot \cos (-B)

\text{Even/Odd:}\qquad \qquad 1+2\cos C \cdot \cos A\cdot \cos B\\\\\\.\qquad \qquad \qquad \quad =1+2\cos A \cdot \cos B\cdot \cos C

LHS = RHS: 1 + 2 cos A · cos B · cos C = 1 + 2 cos A · cos B · cos C   \checkmark

5 0
3 years ago
Please solve 2x+3=x−4
ddd [48]
The answer is x = -7
4 0
3 years ago
Read 2 more answers
Plz help! Thank you so much!
Sergio [31]

Answer:

I dont have idea what I need to the to help you

Step-by-step explanation:

3 0
3 years ago
5(x+4)+10-2x+3(2x+9)
qwelly [4]

Answer:

x = (-19)/3

Step-by-step explanation:

Solve for x:

10 - 2 x + 5 (x + 4) + 3 (2 x + 9) = 0

5 (x + 4) = 5 x + 20:

10 - 2 x + 5 x + 20 + 3 (2 x + 9) = 0

3 (2 x + 9) = 6 x + 27:

6 x + 27 + 5 x - 2 x + 10 + 20 = 0

Grouping like terms, 6 x + 5 x - 2 x + 10 + 20 + 27 = (-2 x + 5 x + 6 x) + (10 + 20 + 27):

(-2 x + 5 x + 6 x) + (10 + 20 + 27) = 0

-2 x + 5 x + 6 x = 9 x:

9 x + (10 + 20 + 27) = 0

10 + 20 + 27 = 57:

9 x + 57 = 0

Subtract 57 from both sides:

9 x + (57 - 57) = -57

57 - 57 = 0:

9 x = -57

Divide both sides of 9 x = -57 by 9:

(9 x)/9 = (-57)/9

9/9 = 1:

x = (-57)/9

The gcd of 57 and 9 is 3, so (-57)/9 = (-(3×19))/(3×3) = 3/3×(-19)/3 = (-19)/3:

Answer: x = (-19)/3

4 0
4 years ago
Other questions:
  • Write an algebraic expression for the phrase. the sum of f and 6 f – 6 f + 6 6f
    12·2 answers
  • Eliminating by multiplying <br> X+3y=1<br> -5x+4y=-24
    15·1 answer
  • What is the quotient written in scientific notation? 6 x 10^24 /8 x 10^8
    15·2 answers
  • A scale factor of 3 was applied to this figure. What would be the new length of the height and width of the triangle?
    7·1 answer
  • Cos ²a/2 = (tana + sina/ 2 tan a)<br><br>​
    13·1 answer
  • WILL GIVE BRAINLIEST!!!!!!
    12·1 answer
  • Given m||n, find the value of x.
    8·1 answer
  • Need help will mark brainliest
    6·1 answer
  • An office building has 123 floors. The floors are 3.8m apart.
    13·1 answer
  • Find the side of a cube if its volume is 1331 cm³.​
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!