The value of 4 is in the 10,000 place. :)
Answer:
R = sqrt[(IWL)^2/(E^2 - I^2)] or R = -sqrt[(IWL)^2/(E^2 - I^2)]
Step-by-step explanation:
Squaring both sides of equation:
I^2 = (ER)^2/(R^2 + (WL)^2)
<=>(ER)^2 = (I^2)*(R^2 + (WL)^2)
<=>(ER)^2 - (IR)^2 = (IWL)^2
<=> R^2(E^2 - I^2) = (IWL)^2
<=> R^2 = (IWL)^2/(E^2 - I^2)
<=> R = sqrt[(IWL)^2/(E^2 - I^2)] or R = -sqrt[(IWL)^2/(E^2 - I^2)]
Hope this helps!
Answer:
Step-by-step explanation:
Numerator
sin
x
cos
y
+
cos
x
sin
y
−
[
sin
x
cos
y
−
cos
x
sin
y
)
=
sin
x
cos
y
+
cos
x
sin
y
−
sin
x
cos
y
+
cos
x
sin
y
=
2
cos
x
sin
y
Denominator
cos
x
cos
y
−
sin
x
sin
y
+
cos
x
cos
y
+
sin
x
sin
y
=
cos
x
cos
y
−
sin
x
sin
y
+
cos
x
cos
y
+
sin
x
sin
y
=
2
cos
x
cos
y
---------------------------------------------------------------
left side can now be expressed as
2
cos
x
sin
y
2
cos
x
cos
y
=
2
cos
x
sin
y
2
cos
x
cos
y
=
sin
y
cos
y
and
sin
y
cos
y
=
tan
y
=
right side hence proved