Answer:
5 kg
Step-by-step explanation:
Answer:
Step-by-step explanation:
4x/2= -5
4x= -5*2
2x= -5
x= -5/2
Answer:
As few as just over 345 minutes (23×15) or as many as just under 375 minutes (25×15).
Imagine a simpler problem: the bell has rung just two times since Ms. Johnson went into her office. How long has Ms. Johnson been in her office? It could be almost as short as just 15 minutes (1×15), if Ms. Johnson went into her office just before the bell rang the first time, and the bell has just rung again for the second time.
Or it could be almost as long as 45 minutes (3×15), if Ms. Johnson went into her office just after the bells rang, and then 15 minutes later the bells rang for the first time, and then 15 minutes after that the bells rang for the second time, and now it’s been 15 minutes after that.
So if the bells have run two times since Ms. Johnson went into her office, she could have been there between 15 minutes and 45 minutes. The same logic applies to the case where the bells have rung 24 times—it could have been any duration between 345 and 375 minutes since the moment we started paying attention to the bells!
Step-by-step explanation:
Make a guess and check table to figure out if you do not know it off the top of your head.
The answer is 7 and 7
Answer:
The ball will be 84 feet above the ground 1.125 seconds and 4.5 seconds after launch.
Step-by-step explanation:
Statement is incorrect. Correct form is presented below:
<em>The height </em>
<em> of an ball that is thrown straight upward from an initial position 3 feet off the ground with initial velocity of 90 feet per second is given by equation </em>
<em>, where </em>
<em> is time in seconds. After how many seconds will the ball be 84 feet above the ground. </em>
We equalize the kinematic formula to 84 feet and solve the resulting second-order polynomial by Quadratic Formula to determine the instants associated with such height:

(1)
By Quadratic Formula:

,
The ball will be 84 feet above the ground 1.125 seconds and 4.5 seconds after launch.