The length of the rectangle is 7 and the width is 3.
<span>Following BEDMAS
4[3+5(18/2-3)-12]+7^3
</span><span>= 4[3+5(18/-1)-12]+7^3
= </span>4[3+5(-18)-12]+ 343
= 4[3+(-90)-12]+ 343
= 4[3+(-90)-12]+ 343
= 4[-99]+ 343
= -396 + 343
= -53
We calculate this by multiplying the number of cookies by the number of boxes:
28*14=(20+8)*14=280+80+32=360+32=392 (that's how I like to count it, there are also other methods)
so she has 392 cookies in common.
Answer:
D
Step-by-step explanation:
our basic Pythagorean identity is cos²(x) + sin²(x) = 1
we can derive the 2 other using the listed above.
1. (cos²(x) + sin²(x))/cos²(x) = 1/cos²(x)
1 + tan²(x) = sec²(x)
2.(cos²(x) + sin²(x))/sin²(x) = 1/sin²(x)
cot²(x) + 1 = csc²(x)
A. sin^2 theta -1= cos^2 theta
this is false
cos²(x) + sin²(x) = 1
isolating cos²(x)
cos²(x) = 1-sin²(x), not equal to sin²(x)-1
B. Sec^2 theta-tan^2 theta= -1
1 + tan²(x) = sec²(x)
sec²(x)-tan(x) = 1, not -1
false
C. -cos^2 theta-1= sin^2
cos²(x) + sin²(x) = 1
sin²(x) = 1-cos²(x), our 1 is positive not negative, so false
D. Cot^2 theta - csc^2 theta=-1
cot²(x) + 1 = csc²(x)
isolating 1
1 = csc²(x) - cot²(x)
multiplying both sides by -1
-1 = cot²(x) - csc²(x)
TRUE
I hope this helps you
2 (x+x+x+x+x+24+24)=120
4x+48=60
x=3
Area =2x.24
Area =2.3.24
Area =144