Answer:
At the positive integer value of x=7 the quadratic function begin to exceed the linear function
Step-by-step explanation:
we have
using a graphing tool
see the attached figure
For x < -1.405 and x > 6.405 the quadratic function begin to exceed the linear function
so
At the positive integer value of x=7 the quadratic function begin to exceed the linear function
Step-by-step explanation:
It looks about right to me.
Step-by-step explanation:
- 2x-2y=-6
3x+4y=8
multiply equation (1) by 3 and equation (2) by 2
- 6x-6y=18
6x+8y=16
Add
2y=34
y= 34÷2
y=17
substitute 17 for y in equation (2)
3x+4y=8
3x+4(17)=8
3x+68=8
3x=8-68
3x=-60
x=-60÷3
x=-20
x=-20,y=17
Answer:
Associative and Commutative properties
Step-by-step explanation:
Answer:
155 +
+ 14
Step-by-step explanation:
The variable x would represent the number/value we don't know, and in this case, we don't know what number is raised to the third power. This being said, x would represent that number.
The question, although worded a bit confusingly, asks to add 155, the number (x) to the exponent of 3, and 14. Mathematically, this would be 155 +
+ 14.