Hi,
To find K you will pick a value from the x and then the corresponding Y value. Then we will plug it into the equation that is given y=Kx
Here:
X=25 Y=160
160=k25
(Divide both sides by 25 to isolate K)
K=6.5
Then plug K value into equation
Y=6.5X
Then if you want to check if that is correct you can pick a different point on the table and plug that into the equation to see if you get the same value.
Check:
X=50
Y=6.5x50
Y=320
Answer:
![x=1](https://tex.z-dn.net/?f=x%3D1)
Step-by-step explanation:
![~~~~~x = \dfrac{1}{2 - \dfrac 1{2-\dfrac{1}{2-x}}}\\\\\\\implies x = \dfrac{1}{2 - \dfrac 1{\dfrac{4-2x-1}{2-x}}}\\\\\\\implies x= \dfrac{1}{2 - \dfrac{2-x}{3-2x}}\\\\\\\implies x = \dfrac{1}{\dfrac{6-4x-2+x}{3-2x}}\\\\\\\implies x = \dfrac{3-2x}{4-3x}\\\\\\\implies 4x -3x^2 = 3-2x\\\\\\\implies 3x^2 -4x +3-2x = 0\\\\\\\implies 3x^2 -6x +3 = 0\\\\\\\implies 3(x^2 -2x +1) =0\\\\\\\implies x^2 -2x +1 = 0\\\\\\\implies (x-1)^2 = 0\\\\\\\implies x -1 = 0\\\\\\\implies x = 1](https://tex.z-dn.net/?f=~~~~~x%20%3D%20%5Cdfrac%7B1%7D%7B2%20-%20%5Cdfrac%201%7B2-%5Cdfrac%7B1%7D%7B2-x%7D%7D%7D%5C%5C%5C%5C%5C%5C%5Cimplies%20x%20%3D%20%5Cdfrac%7B1%7D%7B2%20-%20%5Cdfrac%201%7B%5Cdfrac%7B4-2x-1%7D%7B2-x%7D%7D%7D%5C%5C%5C%5C%5C%5C%5Cimplies%20x%3D%20%5Cdfrac%7B1%7D%7B2%20-%20%5Cdfrac%7B2-x%7D%7B3-2x%7D%7D%5C%5C%5C%5C%5C%5C%5Cimplies%20x%20%3D%20%5Cdfrac%7B1%7D%7B%5Cdfrac%7B6-4x-2%2Bx%7D%7B3-2x%7D%7D%5C%5C%5C%5C%5C%5C%5Cimplies%20x%20%3D%20%5Cdfrac%7B3-2x%7D%7B4-3x%7D%5C%5C%5C%5C%5C%5C%5Cimplies%204x%20-3x%5E2%20%3D%203-2x%5C%5C%5C%5C%5C%5C%5Cimplies%203x%5E2%20-4x%20%2B3-2x%20%3D%200%5C%5C%5C%5C%5C%5C%5Cimplies%203x%5E2%20-6x%20%2B3%20%3D%200%5C%5C%5C%5C%5C%5C%5Cimplies%203%28x%5E2%20-2x%20%2B1%29%20%3D0%5C%5C%5C%5C%5C%5C%5Cimplies%20x%5E2%20-2x%20%2B1%20%3D%200%5C%5C%5C%5C%5C%5C%5Cimplies%20%28x-1%29%5E2%20%3D%200%5C%5C%5C%5C%5C%5C%5Cimplies%20x%20-1%20%3D%200%5C%5C%5C%5C%5C%5C%5Cimplies%20x%20%3D%201)
Answer:
![A=1347.7\ cm^2](https://tex.z-dn.net/?f=A%3D1347.7%5C%20cm%5E2)
Step-by-step explanation:
Given that,
Radius of a cone, r = 13 cm
Slant height of the cone, l = 20 cm
We need to find the surface area of the cone. The formula for the surface area of the cone is given by :
![A=\pi rl +\pi r^2](https://tex.z-dn.net/?f=A%3D%5Cpi%20rl%20%2B%5Cpi%20r%5E2)
Put all the values,
![A=\pi r(l + r)\\\\A=\pi \times 13(20 + 13)\\\\A=1347.7\ cm^2](https://tex.z-dn.net/?f=A%3D%5Cpi%20r%28l%20%2B%20r%29%5C%5C%5C%5CA%3D%5Cpi%20%5Ctimes%2013%2820%20%2B%2013%29%5C%5C%5C%5CA%3D1347.7%5C%20cm%5E2)
So, the surface area of the cone is
.