1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pychu [463]
3 years ago
6

What is 1/6 divided by 8?

Mathematics
2 answers:
viva [34]3 years ago
5 0

Answer:

1/48

Step-by-step explanation:

Reduce the the expression by cancelling the common factors.

Marrrta [24]3 years ago
3 0
Answer:
1/48

explanation:
i suck at explaining math but
1/6 times 1/8
since the reciprocal of division is multiplication you would multiply.
1/6 and 1/8
You might be interested in
What is the percent?​
Brilliant_brown [7]

Answer:

What do u mean

Step-by-step explanation:

7 0
3 years ago
Liz ran 4/5
jolli1 [7]
Part a. is A


part b. the fraction combined is 49/30 which is 1 19/30 so 2km im goin with
4 0
3 years ago
Find <br><img src="https://tex.z-dn.net/?f=%20%5Cfrac%7Bdy%7D%7Bdx%7D%20" id="TexFormula1" title=" \frac{dy}{dx} " alt=" \frac{d
nataly862011 [7]

Answer:

\displaystyle y' = 2x + 3\sqrt{x} + 1

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Algebra I</u>

  • Terms/Coefficients
  • Anything to the 0th power is 1
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Rule [Root Rewrite]:                                                                     \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}<u> </u>

<u>Calculus</u>

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

<em />\displaystyle y = (x + \sqrt{x})^2<em />

<em />

<u>Step 2: Differentiate</u>

  1. Chain Rule:                                                                                                        \displaystyle y' = 2(x + \sqrt{x})^{2 - 1} \cdot \frac{d}{dx}[x + \sqrt{x}]
  2. Rewrite [Exponential Rule - Root Rewrite]:                                                     \displaystyle y' = 2(x + x^{\frac{1}{2}})^{2 - 1} \cdot \frac{d}{dx}[x + x^{\frac{1}{2}}]
  3. Simplify:                                                                                                             \displaystyle y' = 2(x + x^{\frac{1}{2}}) \cdot \frac{d}{dx}[x + x^{\frac{1}{2}}]
  4. Basic Power Rule:                                                                                             \displaystyle y' = 2(x + x^{\frac{1}{2}}) \cdot (1 \cdot x^{1 - 1} + \frac{1}{2}x^{\frac{1}{2} - 1})
  5. Simplify:                                                                                                             \displaystyle y' = 2(x + x^{\frac{1}{2}}) \cdot (1 + \frac{1}{2}x^{-\frac{1}{2}})
  6. Rewrite [Exponential Rule - Rewrite]:                                                              \displaystyle y' = 2(x + x^{\frac{1}{2}}) \cdot (1 + \frac{1}{2x^{\frac{1}{2}}})
  7. Multiply:                                                                                                             \displaystyle y' = 2[(x + x^{\frac{1}{2}}) + \frac{x + x^{\frac{1}{2}}}{2x^{\frac{1}{2}}}]
  8. [Brackets] Add:                                                                                                 \displaystyle y' = 2(\frac{2x + 3x^{\frac{1}{2}} + 1}{2})
  9. Multiply:                                                                                                             \displaystyle y' = 2x + 3x^{\frac{1}{2}} + 1
  10. Rewrite [Exponential Rule - Root Rewrite]:                                                     \displaystyle y' = 2x + 3\sqrt{x} + 1

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e

4 0
3 years ago
If f(x) = 2x^2 + 1 and g(x) = x^2 - 7, find (f - g)(x).
zavuch27 [327]
2x squared +1 (-)x squared -7 is
a.) x squared +8
6 0
3 years ago
Read 2 more answers
Solve each system by elimination.
Lerok [7]
X=6/3=2 is the answer
3 0
3 years ago
Read 2 more answers
Other questions:
  • True or false the graph of x=5 has an intercept of (5,0) and a y-intercept of (0.5)
    10·1 answer
  • Fully explain why an inefficient resource allocation leads an economy to produce at a point inside its production possibilities
    14·1 answer
  • How long would it take for a person jog?
    12·1 answer
  • He climbed 16 yards in 32 minutes. What is the change in elevation each minutes?
    12·1 answer
  • Boa constrictors can grow to 13 feet long. how many inches is this
    12·2 answers
  • How do I determine this function??
    9·1 answer
  • The price of a visit to the dentist is $50. If the dentist fills any cavities, an additional charge of $100 per cavity
    6·1 answer
  • What is the value of x
    8·2 answers
  • Which function is shown in the graph below?
    6·1 answer
  • Find the simple interest due on a 270-day loan of $20,000 at an interest rate of 8.875%
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!