The second one is the write answer
Answer:
Line segments are congruent if they have the same length. However, they need not be parallel. They can be at any angle or orientation on the plane. In the figure above, there are two congruent line segments. If you drag any of the four endpoints, the other segment will change length to remain congruent with the one you are changing.
Answer:
top one is -7
bottom one is -3
Step-by-step explanation:
Answer:
2.4 mph
Step-by-step explanation:
Can you mark me as brainliest
Answer:
Step-by-step explanation:
Okay, so I think I know what the equations are, but I might have misinterpreted them because of the syntax- I think when you ask a question you can use the symbols tool to input it in a more clear way, otherwise you can use parentheses and such.
Problem 1:
(x²)/4 +y²= 1
y= x+1
*substitute for y*
Now we have a one-variable equation we can solve-
x²/4 + (x+1)² = 1
x²/4 + (x+1)(x+1)= 1
x²/4 + x²+2x+1= 1
*subtract 1 from both sides to set equal to 0*
x²/4 +x^2+2x=0
x²/4 can also be 1/4 * x²
1/4 * x² +1*x² +2x = 0
*combine like terms*
5/4 * x^2+2x+ 0 =0
now, you can use the quadratic equation to solve for x
a= 5/4
b= 2
c=0
the syntax on this will be rough, but I'll do my best...
x= (-b ± √(b²-4ac))/(2a)
x= (-2 ±√(2²-4*(5/4)*(0))/(2*(5/4))
x= (-2 ±√(4-0))/(2.5)
x= (-2±2)/2.5
x will have 2 answers because of ±
x= 0 or x= 1.6
now plug that back into one of the equations and solve.
y= 0+1 = 1
y= 1.6+1= 2.6
Hopefully this explanation was enough to help you solve problem 2.
Problem 2:
x² + y² -16y +39= 0
y²- x² -9= 0