Answer:
2440.24 J
Explanation:
Moment of inertia, I1 = 5 kg m^2
frequency, f1 = 3 rps
ω1 = 2 x π x f1 = 2 x π x 3 = 6 π rad/s
Moment of inertia, I2 = 2 kg m^2
Let the new frequency is f2.
ω2 = 2 x π x f2
here no external torque is applied, so the angular momentum remains constant.
I1 x ω1 = I2 x ω2
5 x 6 π = 2 x 2 x π x f2
f2 = 7.5 rps
ω2 = 2 x π x 7.5 = 15 π
Initial kinetic energy, K1 = 1/2 x I1 x ω1^2 = 0.5 x 5 x (6 π)² = 887.36 J
Final kinetic energy, K2 = 1/2 x I2 x ω2^2 = 0.5 x 3 x (15 π)² = 3327.6 J
Work done, W = Change in kinetic energy = 3327.6 - 887.36 = 2440.24 J
The correct answer is d hope i could help
The observation that is inconsistent with the ideal gas equation is; "When temperature is held constant and volume increases, the pressure increases."
Boyle's law describes the relationship between the pressure and volume of ideal gas. Boyle's law states that, the volume of a given mass of gas is inversely proportional to its pressure at constant temperature.
Hence, the statement that "When temperature is held constant and volume increases, the pressure increases." does not agree with Boyle's law therefore it is inconsistent with the ideal gas law.