Answer:
The general rate of change can be found by using the difference quotient formula. To find the average rate of change over an interval, enter a function with an interval:
f
(
x
)
= x
^2
, [
2
,
3
]
The rate of Change is 2
Step-by-step explanation:
First you divide 17.5/ 3 and then the answer multiply by 15 and get 87.5 i think
For the ODE

multiply both sides by <em>t</em> so that the left side can be condensed into the derivative of a product:


Integrate both sides with respect to <em>t</em> :

Divide both sides by
to solve for <em>y</em> :

Now use the initial condition to solve for <em>C</em> :



So the particular solution to the IVP is

or

Answer:
![x= -\frac{ln [\frac{5P}{8000-P}]}{0.002}](https://tex.z-dn.net/?f=%20x%3D%20-%5Cfrac%7Bln%20%5B%5Cfrac%7B5P%7D%7B8000-P%7D%5D%7D%7B0.002%7D)
a) ![x= -\frac{ln [\frac{5*200}{8000-200}]}{0.002} =1027.062 \approx 1027](https://tex.z-dn.net/?f=%20x%3D%20-%5Cfrac%7Bln%20%5B%5Cfrac%7B5%2A200%7D%7B8000-200%7D%5D%7D%7B0.002%7D%20%3D1027.062%20%5Capprox%201027)
b) ![x= -\frac{ln [\frac{5*800}{8000-800}]}{0.002} =293.893 \approx 294](https://tex.z-dn.net/?f=%20x%3D%20-%5Cfrac%7Bln%20%5B%5Cfrac%7B5%2A800%7D%7B8000-800%7D%5D%7D%7B0.002%7D%20%3D293.893%20%5Capprox%20294)
Step-by-step explanation:
For this case we have the following function:

We can solve for x like this. First we can reorder the expression like this:



Now we can apply natura log on both sids and we got:
![ln[\frac{40000}{8000-P} -5] = ln e^{-0.002x}](https://tex.z-dn.net/?f=%20ln%5B%5Cfrac%7B40000%7D%7B8000-P%7D%20-5%5D%20%3D%20ln%20e%5E%7B-0.002x%7D)
![ln [\frac{5P}{8000-P}] = -0.002x](https://tex.z-dn.net/?f=%20ln%20%5B%5Cfrac%7B5P%7D%7B8000-P%7D%5D%20%3D%20-0.002x%20)
And if we solve for x we got:
![x= -\frac{ln [\frac{5P}{8000-P}]}{0.002}](https://tex.z-dn.net/?f=%20x%3D%20-%5Cfrac%7Bln%20%5B%5Cfrac%7B5P%7D%7B8000-P%7D%5D%7D%7B0.002%7D)
Part a
For this case we can replace P = 200 and see what we got for x like this:
![x= -\frac{ln [\frac{5*200}{8000-200}]}{0.002} =1027.062 \approx 1027](https://tex.z-dn.net/?f=%20x%3D%20-%5Cfrac%7Bln%20%5B%5Cfrac%7B5%2A200%7D%7B8000-200%7D%5D%7D%7B0.002%7D%20%3D1027.062%20%5Capprox%201027)
Part b
For this case we can replace P = 800 and see what we got for x like this:
![x= -\frac{ln [\frac{5*800}{8000-800}]}{0.002} =293.893 \approx 294](https://tex.z-dn.net/?f=%20x%3D%20-%5Cfrac%7Bln%20%5B%5Cfrac%7B5%2A800%7D%7B8000-800%7D%5D%7D%7B0.002%7D%20%3D293.893%20%5Capprox%20294)