Slope point form:
We need the slope "m" and a point (x₀,y₀)
y-y₀=m(x-x₀)
1)
we calculate the slope "m".
Given two points:
(x₁,y₁)
(x₂,y₂)
the slope "m" is:
m=(y₂-y₁) / (x₂-x₁)
In this case:
(4,10)
(6,11)
m=(11-10) / (6-4)=1/2
Now, we calculate the solpe point form.
(4,10)
m=1/2
y-y₀=m(x-x₀)
y-10=(1/2)(x-4)
we make the standard form
y-10=x/2 - 2
Lowest common multiple=2
2y-20=x-4
-x+2y=-4+20
-x+2y=16
Answer: -x+2y=16
Answer:
mira a las base de las figuras y busca cual base matchs con la figuras de la figura prinsipal
Step-by-step explanation:
como el cono va con la del toda la izquierda de la de la mitad
Answer:
Step-by-step explanation:
To find median and mode for
a) In a uniform distribution median would be
(a+b)/2 and mode = any value
b) X is N
we know that in a normal bell shaped curve, mean = median = mode
Hence mode = median = ![\mu](https://tex.z-dn.net/?f=%5Cmu)
c) Exponential with parameter lambda
Median = ![\frac{ln2}{\lambda }](https://tex.z-dn.net/?f=%5Cfrac%7Bln2%7D%7B%5Clambda%20%7D)
Mode =0