Given: Principal Amount (P) = $300
The rate of interest (r) = (3/4) compounded quarterly.
No. quarters in 3 years (n) = 3×4 = 12
To find: The amount for the CD on maturity. Let it will be (A)
Formula: Compound Amount (A) = P [ 1 + (r ÷100)]ⁿ
Now, (A) = P [ 1 + (r ÷100)]ⁿ
or, = $300 [ 1 + (3 ÷400)]¹²
or, = $300 × [ 403 ÷ 400]¹²
or, = $300 × 1.0938069
or, = $ 328.14
Hence, the correct option will be C. $328.14
A = $2,861.60
I = A - P = $2,361.60
Equation:
A = P(1 + rt)
Calculation:
First, converting R percent to r a decimal
r = R/100 = 26.24%/100 = 0.2624 per year.
Solving our equation:
A = 500(1 + (0.2624 × 18)) = 2861.6
A = $2,861.60
The total amount accrued, principal plus interest, from simple interest on a principal of $500.00 at a rate of 26.24% per year for 18 years is $2,861.60.
Answer:
x = 180 - (31 + 40)
Step-by-step explanation:
x = 180 - (31 + 40)
Using the SSA formula:
X = SQRT ( 40^2 + 26^2 - 2*40*26*cos(65))
X = SQRT(2276 - 2080*cos(65))
X = SQRT(1396.954)
X = 37.37 = 37.4 ft.
(antique book age)*4 idrk the question but i hope this helps