Answer:
Nitrogen
Explanation:
The nitrogenous bases of the two separate polynucleotide strands are bound together, according to base pairing rules (A with T and C with G), with hydrogen bonds to make double-stranded DNA.
Thanks for the news. We'll look forward with great anticipation to any reports of the results of that experiment. Then, if the findings raise any questions in your mind that you'd like to discuss, we'll certainly help you work on them.
Answer;
Blood pressure in the glomerular capillaries.
Explanation;
-The glomerulus is a tuft of small blood vessels called capillaries located within Bowman's capsule within the kidney.
-The process by which glomerular filtration occurs is called renal ultrafiltration. The force of hydrostatic pressure in the glomerulus (the force of pressure exerted from the pressure of the blood vessel itself) is the driving force that pushes filtrate out of the capillaries and into the slits in the nephron.
Phosphoryl-transfer potential is the ability of an organic molecule to transfer its terminal phosphoryl group to water which is an acceptor molecule. It is the “standard free energy of hydrolysis”.
Explanation:
This potential plays a key role during cellular energy transformation by energy coupling during ATP hydrolysis.
A compound with a high phosphoryl-transfer potential has the increased ability to couple the carbon oxidation with ATP synthesis and can accelerate cellular energy transformation.
A compound with a high phosphoryl-transfer potential can readily donate its terminal phosphate group; whereas, a compound with a low has a lesser ability to donate its phosphate group.
ATP molecules have a high phosphoryl transfer potential due to its structure, resonance stabilization, high entropy, electrostatic repulsion and stabilization by hydration. Compounds like creatine phosphate, phosphoenolpyruvate also have high phosphoryl-transfer potential.