1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Kryger [21]
3 years ago
11

NEED HELP YOU GUYS!!!!

Mathematics
1 answer:
AURORKA [14]3 years ago
5 0

Answer:

x1=

\frac{ - 2 +  \sqrt{100} }{ - 48}

x2=

\frac{ - 2 +  \sqrt{100} }{ - 48}

You might be interested in
.. Which of the following are the coordinates of the vertices of the following square with sides of length a?
atroni [7]

Option A: O(0,0), S(0,a), T(a,a), W(a,0)

Option D: O(0,0), S(a,0), T(a,a), W(0,a)

Step-by-step explanation:

Option A: O(0,0), S(0,a), T(a,a), W(a,0)

To find the sides of a square, let us use the distance formula,

d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}

Now, we shall find the length of the square,

\begin{array}{l}{\text { Length } O S=\sqrt{(0-0)^{2}+(a-0)^{2}}=\sqrt{a^{2}}=a} \\{\text { Length } S T=\sqrt{(a-0)^{2}+(a-a)^{2}}=\sqrt{a^{2}}=a} \\{\text { Length } T W=\sqrt{(a-a)^{2}+(0-a)^{2}}=\sqrt{a^{2}}=a} \\{\text { Length } O W=\sqrt{(a-0)^{2}+(0-0)^{2}}=\sqrt{a^{2}}=a}\end{array}

Thus, the square with vertices O(0,0), S(0,a), T(a,a), W(a,0) has sides of length a.

Option B: O(0,0), S(0,a), T(2a,2a), W(a,0)

Now, we shall find the length of the square,

\begin{aligned}&\text { Length } O S=\sqrt{(0-0)^{2}+(a-0)^{2}}=\sqrt{a^{2}}=a\\&\text {Length } S T=\sqrt{(2 a-0)^{2}+(2 a-a)^{2}}=\sqrt{5 a^{2}}=a \sqrt{5}\\&\text {Length } T W=\sqrt{(a-2 a)^{2}+(0-2 a)^{2}}=\sqrt{2 a^{2}}=a \sqrt{2}\\&\text {Length } O W=\sqrt{(a-0)^{2}+(0-0)^{2}}=\sqrt{a^{2}}=a\end{aligned}

This is not a square because the lengths are not equal.

Option C: O(0,0), S(0,2a), T(2a,2a), W(2a,0)

Now, we shall find the length of the square,

\begin{array}{l}{\text { Length OS }=\sqrt{(0-0)^{2}+(2 a-0)^{2}}=\sqrt{4 a^{2}}=2 a} \\{\text { Length } S T=\sqrt{(2 a-0)^{2}+(2 a-2 a)^{2}}=\sqrt{4 a^{2}}=2 a} \\{\text { Length } T W=\sqrt{(2 a-2 a)^{2}+(0-2 a)^{2}}=\sqrt{4 a^{2}}=2 a} \\{\text { Length } O W=\sqrt{(2 a-0)^{2}+(0-0)^{2}}=\sqrt{4 a^{2}}=2 a}\end{array}

Thus, the square with vertices O(0,0), S(0,2a), T(2a,2a), W(2a,0) has sides of length 2a.

Option D: O(0,0), S(a,0), T(a,a), W(0,a)

Now, we shall find the length of the square,

\begin{aligned}&\text { Length OS }=\sqrt{(a-0)^{2}+(0-0)^{2}}=\sqrt{a^{2}}=a\\&\text { Length } S T=\sqrt{(a-a)^{2}+(a-0)^{2}}=\sqrt{a^{2}}=a\\&\text { Length } T W=\sqrt{(0-a)^{2}+(a-a)^{2}}=\sqrt{a^{2}}=a\\&\text { Length } O W=\sqrt{(0-0)^{2}+(a-0)^{2}}=\sqrt{a^{2}}=a\end{aligned}

Thus, the square with vertices O(0,0), S(a,0), T(a,a), W(0,a) has sides of length a.

Thus, the correct answers are option a and option d.

8 0
3 years ago
4. Ava’s grade on the math test was just s points fewer than100. Write an expression for her grade
I am Lyosha [343]

Answer:

100 - s

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
If s(x)=2-x^2 and t(x)=3x, which value is equivalent to (s*t)(-7)?
andreyandreev [35.5K]

Answer:

(s*t)(-7) = 987

Step-by-step explanation:

s(x) = 2 - x²

t(x) = 3x

To find (s*t)(x), multiply s(x) and t(x).

(s*t)(x) = (2 - x²)(3x)

(s*t)(x) = 6x - 3x³

Now that you have (s*t)(x), plug -7 in.

(s*t)(-7) = 6(-7) - 3(-7)³

(s*t)(-7) = 6(-7) - 3(-343)

(s*t)(-7) = -42 + 1029

(s*t)(-7) = 987

5 0
4 years ago
Does the associative property work over subtraction
Morgarella [4.7K]
Sometimes ( I think )
8 0
4 years ago
Read 2 more answers
Putting square tiles on the floor cost $6.50 per square foot. Determine the cost of putting down a 12 by 12 square foot floor pl
Svetradugi [14.3K]

Answer:

12 × 12 = 144 square foot

1 square foot = $6.50

144 square foot = $6.50 × 144

= $936

3 0
3 years ago
Other questions:
  • Can someone help me on this
    11·1 answer
  • The intersection of any two disjoint sets is a null set. Justify your answer.​
    13·1 answer
  • The equation of the parabola whose focus is at (7 0) and directrix at y=-7 is
    10·1 answer
  • Kathy has 12 pens James has 8 pens how many more does Kathy have than james​
    6·1 answer
  • Which answer describes the solution to each equation?
    5·1 answer
  • How many significant figures are there In the number 10.76
    7·1 answer
  • Write the slope intercept form of a line going through
    5·1 answer
  • The perimeter of a rectangle is 70cm.<br> Its shortest side has a length of 10cm.
    5·1 answer
  • The length of a rectangle is 2.72 feet and the width is 3.81 feet. Find the area
    14·1 answer
  • Work out <br><br> a) 4 1/3 x 6<br><br> b) 2 3/5 x 3 1/3
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!