The solution to the expressions given are;
9 -9t/ 12 - 5t
a. 20/ 169
b. -170/ 169
c. 386/ 169
d. -10/ 169
<h3>How to solve the expressions</h3>
Given:

We can see that both variables in the numerator and denominator have no common factor, thus cannot be factorized further
a. 
First, let's find the lowest common multiple
LCM = 169
= 
= 
= 20/ 169
b. 
The lowest common multiple is 119
= 
substract the numerator
= - 170/ 119
c. 
The lowest common multiple is 169
= 
= 386/ 169
d. 
The lowest common multiple is 169
= 
= - 10/ 169
Thus, we have the solutions to be 9 -9t/ 12 - 5t, 20/ 169, -170/ 169, 386/ 169, -10/ 169 respectively.
Learn more about LCM here:
brainly.com/question/12732917
#SPJ1
Answer:
3/8 & 4/8
Step-by-step explanation:
1/2 - 1/8 = 4/8 - 1/8 = 3/8
x - 1/8 = 3/8
x = 4/8
Answer: 1/7
Step-by-step explanation:
solve for y
Answer:
(x, y) = (2, 5)
Step-by-step explanation:
I find it easier to solve equations like this by solving for x' = 1/x and y' = 1/y. The equations then become ...
3x' -y' = 13/10
x' +2y' = 9/10
Adding twice the first equation to the second, we get ...
2(3x' -y') +(x' +2y') = 2(13/10) +(9/10)
7x' = 35/10 . . . . . . simplify
x' = 5/10 = 1/2 . . . . divide by 7
Using the first equation to find y', we have ...
y' = 3x' -13/10 = 3(5/10) -13/10 = 2/10 = 1/5
So, the solution is ...
x = 1/x' = 1/(1/2) = 2
y = 1/y' = 1/(1/5) = 5
(x, y) = (2, 5)
_____
The attached graph shows the original equations. There are two points of intersection of the curves, one at (0, 0). Of course, both equations are undefined at that point, so each graph will have a "hole" there.
Answer:
y = (x+4)^2 +13
Step-by-step explanation:
y=x^2+8x+29
To complete the square take the coefficient of the x term
8
Divide by 2
8/2 =4
Then square it
4^2 =16
y=x^2+8x+16+13
= (x^2+8x+16) +13
= (x+4)^2 +13