Part A:
Given a square with sides 6 and x + 4. Also, given a rectangle with sides 2 and 3x + 4
The perimeter of the square is given by 4(x + 4) = 4x + 16
The area of the rectangle is given by 2(2) + 2(3x + 4) = 4 + 6x + 8 = 6x + 12
For the perimeters to be the same
4x + 16 = 6x + 12
4x - 6x = 12 - 16
-2x = -4
x = -4 / -2 = 2
The value of x that makes the <span>perimeters of the quadrilaterals the same is 2.
Part B:
The area of the square is given by

The area of the rectangle is given by 2(3x + 4) = 6x + 8
For the areas to be the same

Thus, there is no real value of x for which the area of the quadrilaterals will be the same.
</span>
Answer:
Yes.
Step-by-step explanation:
According to the Transitive property of the Algebraic properties of equality, two values are said to be equal is they are differently equal to a corresponding third party. This is, If a=b and b=c then a=c.
Hence, if x=5 and 5=y, then following the transitive property of Algebraic properties of equality, x=y, hence the Algebraic property of equality Justifies the statement.
Answer:
it that a comma or decimal
Well lets see. You have a total of 52 marbles. So all you would have to do would be to find the percent of 52 out of 60. This sounds confusing and I may not be completely right but I hope you give it a shot!
Answer:
5
Step-by-step explanation: