You just need to plug those expressions inside the formula: it doesn't matter if they're expressions involving a variable instead of plain numbers: the formula becomes

If you want, you can simplify it by expanding the square and then multiply the two parenthesis:

Here is our profit as a function of # of posters
p(x) =-10x² + 200x - 250
Here is our price per poster, as a function of the # of posters:
pr(x) = 20 - x
Since we want to find the optimum price and # of posters, let's plug our price function into our profit function, to find the optimum x, and then use that to find the optimum price:
p(x) = -10 (20-x)² + 200 (20 - x) - 250
p(x) = -10 (400 -40x + x²) + 4000 - 200x - 250
Take a look at our profit function. It is a normal trinomial square, with a negative sign on the squared term. This means the curve is a downward facing parabola, so our profit maximum will be the top of the curve.
By taking the derivative, we can find where p'(x) = 0 (where the slope of p(x) equals 0), to see where the top of profit function is.
p(x) = -4000 +400x -10x² + 4000 -200x -250
p'(x) = 400 - 20x -200
0 = 200 - 20x
20x = 200
x = 10
p'(x) = 0 at x=10. This is the peak of our profit function. To find the price per poster, plug x=10 into our price function:
price = 20 - x
price = 10
Now plug x=10 into our original profit function in order to find our maximum profit:
<span>p(x)= -10x^2 +200x -250
p(x) = -10 (10)</span>² +200 (10) - 250
<span>p(x) = -1000 + 2000 - 250
p(x) = 750
Correct answer is C)</span>
The cost per unit of the auto shop function is the slope of the function
87 represents the slope and the cost per tire purchased
The function is given as:

A linear function is represented as:

Where:
m represents the slope or the unit rate.
So, by comparison:

This means that 87 represents the slope and the cost per tire purchased
Read more about slopes at:
brainly.com/question/18576224
The horizontal value in a pair of coordinates: how far along the point is. The X Coordinate is always written first in an ordered pair of coordinates (x,y), such as (12,5). In this example, the value "12" is the X Coordinate. Also called "Abscissa" See: Coordinates.