The two consecutive odd integers are 57 & 59.
Answer:
<h2>S.A. = 62</h2>
Step-by-step explanation:
We have:
two rectangles 2 × 3
two rectangles 3 × 5
two rectangles 2 × 5
Calculate the areas:
A₁ = (2)(3) = 6
A₂ = (3)(5) = 15
A₃ = (2)(5) = 10
The Surface Area:
S.A. = 2A₁ + 2A₂ + 2A₃
S.A. = (2)(6) + (2)(15) + (2)(10) = 12 + 30 + 20 = 62
The question is incomplete. Here is the complete question.
m∠J and m∠Kare base angles of an isosceles trapezoid JKLM.
If m∠J = 18x + 8, and m∠M = 11x + 15 , find m∠K.
A. 1
B. 154
C. 77
D. 26
Answer: B. m∠K = 154
Step-by-step explanation: <u>Isosceles</u> <u>trapezoid</u> is a parallelogram with two parallel sides, called Base, and two non-parallel sides that have the same measure.
Related to internal angles, angles of the base are equal and opposite angles are supplementary.
In trapezoid JKLM, m∠J and m∠M are base angles, so they are equal:
18x + 8 = 11x + 15
7x = 7
x = 1
Now, m∠K is opposite so, they are supplementary, which means their sum results in 180°:
m∠J = 18(1) + 8
m∠J = 26
m∠K + m∠J = 180
m∠K + 26 = 180
m∠K = 154
The angle m∠K is 154°
Answer:
90
Step-by-step explanation:
Check the picture below, so the hyperbola looks more or less like so, so let's find the length of the conjugate axis, or namely let's find the "b" component.
![\textit{hyperbolas, horizontal traverse axis } \\\\ \cfrac{(x- h)^2}{ a^2}-\cfrac{(y- k)^2}{ b^2}=1 \qquad \begin{cases} center\ ( h, k)\\ vertices\ ( h\pm a, k)\\ c=\textit{distance from}\\ \qquad \textit{center to foci}\\ \qquad \sqrt{ a ^2 + b ^2} \end{cases} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Ctextit%7Bhyperbolas%2C%20horizontal%20traverse%20axis%20%7D%20%5C%5C%5C%5C%20%5Ccfrac%7B%28x-%20h%29%5E2%7D%7B%20a%5E2%7D-%5Ccfrac%7B%28y-%20k%29%5E2%7D%7B%20b%5E2%7D%3D1%20%5Cqquad%20%5Cbegin%7Bcases%7D%20center%5C%20%28%20h%2C%20k%29%5C%5C%20vertices%5C%20%28%20h%5Cpm%20a%2C%20k%29%5C%5C%20c%3D%5Ctextit%7Bdistance%20from%7D%5C%5C%20%5Cqquad%20%5Ctextit%7Bcenter%20to%20foci%7D%5C%5C%20%5Cqquad%20%5Csqrt%7B%20a%20%5E2%20%2B%20b%20%5E2%7D%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
