Step-by-step explanation:
- 4 × (1/7) Less Than
- 12 × 2(5/6) Greater Than
<em>The Rule: </em><em>If</em><em> </em><em>you</em><em> </em><em>are</em><em> </em><em>multiplying</em><em> </em><em>by</em><em> </em><em>a</em><em> </em><em>value</em><em> </em><em>less</em><em> </em><em>than</em><em> </em><em>one</em><em>,</em><em> </em><em>your</em><em> </em><em>product</em><em> </em><em>will</em><em> </em><em>decrease</em><em>.</em><em> </em><em>If</em><em> </em><em>you</em><em> </em><em>are</em><em> </em><em>multiplying</em><em> </em><em>by</em><em> </em><em>1</em><em>,</em><em> </em><em>the</em><em> </em><em>product</em><em> </em><em>will</em><em> </em><em>be</em><em> </em><em>equal</em><em> </em><em>and</em><em> </em><em>if</em><em> </em><em>you</em><em> </em><em>are</em><em> </em><em>multiplying</em><em> </em><em>by</em><em> </em><em>a</em><em> </em><em>value</em><em> </em><em>greater</em><em> </em><em>than</em><em> </em><em>1</em><em>,</em><em> </em><em>the</em><em> </em><em>product</em><em> </em><em>will</em><em> </em><em>increase</em><em>.</em>
Answer:
109.2
Step-by-step explanation:
Answer:
18%
Step-by-step explanation:
Since the original price is $78 then this is the original 100% of the price. The new price will be marked up x percent and be $92. To find the new price set up a proportion with these values:

Solve for the original price by cross multiplying numerator with denominator.
x(78) = 92(100)
78x = 9200
x= 117.9 = 118%
This is 18% more or over the original price.
The trigonometric Identity proof (sec²θ - 1)cot²θ = 1 is as explained below.
<h3>How to prove trigonometric Identities?</h3>
We want to prove that;
(sec²θ - 1)cot²θ = 1
Now, we know from trigonometric identities that;
sec²θ - 1 = tan²θ
Thus, the left hand side of our original equation can be written as;
tan²θ * cot²θ
We also know in trigonometric identities that 1/tan θ = cot θ. Thus;
tan²θ * cot²θ can be written as;
tan²θ * (1/ tan²θ)
The above will cancel out to give us 1 which is also equal to the right hand side and as such our trigonometric proof is complete.
Read more about Trigonometric Identities at; brainly.com/question/7331447
#SPJ1