You have 10 slices of cake, you and your friends Jerry, George, Martha, and Jenny ( just an example ) eat 2 slices of cake.
A more real life one would be:
You have 6 bills to pay off, then two more come in, you only pay off 4,
( I hope this helped, I'm sorry if any of this is wrong:) )
Answer:
204
Step-by-step explanation:
17 x 12=204
That's a huge number of points.
First: Calculate the value of 62 two pointers
62 * 2 = 124
Second: find the number of points that were due to 3 pointers.
151 - 124 = 27
Third: Divide by 3 to find the number of 3 pointers.
27÷3 = 9
Answer: There were 9 three pointers.
Let the lengths of the sides of the rectangle be x and y. Then A(Area) = xy and 2(x+y)=300. You can use substitution to make one equation that gives A in terms of either x or y instead of both.
2(x+y) = 300
x+y = 150
y = 150-x
A=x(150-x) <--(substitution)
The resulting equation is a quadratic equation that is concave down, so it has an absolute maximum. The x value of this maximum is going to be halfway between the zeroes of the function. The zeroes of the function can be found by setting A equal to 0:
0=x(150-x)
x=0, 150
So halfway between the zeroes is 75. Plug this into the quadratic equation to find the maximum area.
A=75(150-75)
A=75*75
A=5625
So the maximum area that can be enclosed is 5625 square feet.
Answer:
A(max) = (9/2)*L² ft²
Dimensions:
x = 3*L feet
y = (3/2)*L ft
Step-by-step explanation:
Let call "x" and " y " sides of the rectangle. The side x is parallel to the wall of the house then
Area of the rectangle is
A(r) = x*y
And total length of fence available is 6*L f , and we will use the wall as one x side then, perimeter of the rectangle which is 2x + 2y becomes x + 2*y
Then
6*L = x + 2* y ⇒ y = ( 6*L - x ) /2
And the area as function of x is
A(x) = x* ( 6*L - x )/2
A(x) = ( 6*L*x - x² ) /2
Taking derivatives on both sides of the equation we get:
A´(x) = 1/2 ( 6*L - 2*x )
A´(x) = 0 ⇒ 1/2( 6*L - 2*x ) = 0
6*L - 2*x = 0
-2*x = - 6*L
x = 3*L feet
And
y = ( 6*L - x ) /2 ⇒ y = ( 6*L - 3*L )/ 2
y = ( 3/2)*L feet
And area maximum is:
A(max) = 3*L * 3/2*L
A(max) = (9/2)*L² f²