1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bulgar [2K]
4 years ago
7

Mind helping someone out?

Mathematics
1 answer:
anygoal [31]4 years ago
3 0
\bf 2a^3b^2\sqrt[3]{12b}\implies 2a^3b^2\sqrt[3]{12b^1}\implies \sqrt[3]{(2)^3(a^3)^3(b^2)^3~~~~12b^1}
\\\\\\
\sqrt[3]{2^3a^{3\cdot 3}b^{2\cdot 3}~~~~12b^1}\implies \sqrt[3]{8a^9b^6~~~~12b^1}\implies \sqrt[3]{(8)(12)a^9b^6b^1}
\\\\\\
\sqrt[3]{96a^9b^{6+1}}\implies \sqrt[3]{96a^9b^7}
You might be interested in
How do I solve the following system of equations? <br>-5x-3y=7<br>-3x-4y=2​
garri49 [273]

Answer:

(-2, 1)

Step-by-step explanation:

Systems of equations can be solved using different methods.  For this set of systems, you can multiply each equation by a factor in order to eliminate a variable and solve for the other variable:

-3(-5x - 3y = 7)  or 15x + 9y = -21

5(-3x - 4y = 2)  or <u>-15x -20y = 10</u>

                                    -11y = -11

                                        y = 1

Solve for x:  -5x - 3 = 7

Add 3 to both sides:  -5x -3 + 3 = 7 + 3 or -5x = 10

Solve for x: x = -2

(-2, 1)

6 0
3 years ago
Find the equation of the line passing through the point (4,−1) that is parallel to the line 2x−3y=9.
motikmotik

Hey there!

Line passes through (4, -1) & is parallel to 2x -3y=9

Let's start off by identifying what our slope is. In the slope-intercept form y=mx+b, we know that "m" is our slope.

The given equation needs to be converted into slope-intercept form and we can do this by getting y onto its own side of the equal sign.

Start off by subtracting 2x from both sides.

-3y = -2x + 9

Then, divide both sides by -3.

y = (-2x + 9)/-3

Simplify.

y = 2/3x - 3

"M" is simply a place mat so if we look at our given line, the "m" value is 2/3. Therefore, our slope is 2/3.

We should also note that we're looking for a line that's parallel to the given one. This means that our new line has the same slope as our given line. Therefore, our new line has a slope of 2/3.

Now, we use point-slope form ( y-y₁=m(x-x₁) ) to complete our task of finding a line that passes through (4, -1). Our new slope is 2/3 & it passes through (4, -1).

y-y₁=m(x-x₁)

Let's start by plugging in 2/3 for m (our new slope), 4 for x1 and -1 for y1.

y - (-1) = 2/3(x - 4)

Simplify.

y + 1 = 2/3 + 8/3

Simplify by subtracting 1 from both sides.

y = 2/3x + 8/3 - 1

Simplify.

y = 2/3x + 5/3

~Hope I helped!~

7 0
4 years ago
Ab = 50, a^2 = 100, b^2 = 25; (a-b)^2 = ?
Blababa [14]
The answer would be:

( ab + 50 ) • ( ab - 50 )
--------------------------------
25b^2
8 0
3 years ago
Read 2 more answers
A news station would like to conduct an exit poll to determine the likelihood that a highly debated amendment will receive enoug
vladimir1956 [14]

Answer:

The expression is n = (\frac{1.645*0.5}{0.03})^2

Step-by-step explanation:

In a sample with a number n of people surveyed with a probability of a success of \pi, and a confidence level of 1-\alpha, we have the following confidence interval of proportions.

\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}

In which

z is the z-score that has a p-value of 1 - \frac{\alpha}{2}.

The margin of error is of:

M = z\sqrt{\frac{\pi(1-\pi)}{n}}

90% confidence level

So \alpha = 0.1, z is the value of Z that has a p-value of 1 - \frac{0.1}{2} = 0.95, so Z = 1.645.

What expression would give the smallest sample size that will result in a margin of error of no more than 3 percentage points?

We have to find n for which M = 0.03.

We have no prior estimate for the proportion, so we use \pi = 0.5. So

M = z\sqrt{\frac{\pi(1-\pi)}{n}}

0.03 = 1.645\sqrt{\frac{0.5*0.5}{n}}

0.03\sqrt{n} = 1.645*0.5

\sqrt{n} = \frac{1.645*0.5}{0.03}

(\sqrt{n})^2 = (\frac{1.645*0.5}{0.03})^2

n = (\frac{1.645*0.5}{0.03})^2

The expression is n = (\frac{1.645*0.5}{0.03})^2

3 0
3 years ago
What is the result of converting 1250 yards into miles? Remember that 1 mile = 1760 yards.
lesya692 [45]
1760 yards = 1 mile
1250 yards = 1250/1760 = 0.71 miles.
4 0
3 years ago
Read 2 more answers
Other questions:
  • Mariana's swimming pool holds 22,000 gallons of water. If there are approximately 7.5 gallons per cubic foot, determine the size
    14·1 answer
  • What is 5/3times11.2
    9·2 answers
  • Solving linear inequalities
    14·1 answer
  • How can I write a slope intercept form for this graph
    7·1 answer
  • Which triangles are similar?
    14·1 answer
  • What is a linear expression? Is there any difference with a linear equation, other than having an equal sign? THOUGHTFUL, DETAIL
    12·1 answer
  • Find f(-3) if f(x) = x^2<br> 06<br> 0-9<br> 09<br> 0-6
    15·1 answer
  • According to the National Association of Theater Owners, the average price for a movie in the United States in 2012 was $7.96. A
    15·1 answer
  • A rental car company charges $35 a day plus $.15/mi for a mid-size car. A customer owes $117.15 for a three-day rental. How many
    13·1 answer
  • A quadratic function has 2 points (6,12) and (-2,12). Which of these points could be the vertex
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!