B, it's a steady mortgage rate that won't change.
<span>Annual = Years = 6.64; Actually 7 years
Monthly = Years = 6.33; 6 Years, 4 months
Daily = Years = 6.30; 6 Years, 111 days
Continuously = 6.30; 6 Years, 110 days
The formula for compound interest is
FV = P*(1 + R/n)^(nt)
where
FV = Future Value
P = Principle
R = Annual interest rate
n = number of periods per year
t = number of years
For this problem, we can ignore p and concentrate on the (1+R/n)^(nt) term, looking for where it becomes 2. So let's use this simplified formula:
2 = (1 + R/n)^(nt)
With R, n, and t having the same meaning as in the original formula.
For for the case of compounding annually
2 = (1 + R/n)^(nt)
2 = (1 + 0.11/1)^(1t)
2 = (1.11)^t
The above equation is effectively asking for the logarithm of 2 using a base of 1.11. To do this take the log of 2 and divide by the log of 1.11. So
log(2) / log(1.11) = 0.301029996 / 0.045322979 = 6.641884618
This explanation of creating logarithms to arbitrary bases will not be repeated for the other problems.
The value of 6.641884618 indicates that many periods is needed. 6 is too low giving an increase of
1.11^6 =1.870414552
and 7 is too high, giving an increase of 1.11^7 = 2.076160153
But for the purpose of this problem, I'll say you double your money after 7 years.
For compounding monthly:
2 = (1 + R/n)^(nt)
2 = (1 + 0.11/12)^(12t)
2 = (1 + 0.009166667)^(12t)
2 = 1.009166667^(12t)
log(2)/log(1.009166667) = 0.301029996 / 0.003962897 = 75.96210258
And since the logarithm is actually 12*t, divide by 12
75.96210258 / 12 = 6.330175215
Which is 6 years and 4 months.
For compounding daily:
2 = (1 + 0.11/365)^(365t)
2 = (1 + 0.00030137)^(365t)
2 = 1.00030137^(365t)
log(2)/log(1.00030137) = 0.301029996 / 0.000130864 = 2300.334928
2300.334928 / 365 = 6.302287474
Continuously:
For continuous compounding, there's a bit of calculus required and the final formula is
FV = Pe^(rt)
where
FV = Future value
P = Principle
e = mathematical constant e. Approximately 2.718281828
r = Interest rate
t = time in years
Just as before, we'll simplify the formula and use
2 = e^(rt)
Since we have the function ln(x) which is the natural log of x, I won't bother doing log conversions.
rt = ln(2)
0.11 * t = 0.693147181
t = 0.693147181 / 0.11
t = 6.301338005</span>
Answer:
4.267 times
Explanation:
The computation of market to book ratio is shown below:
Market to book ratio = (Market price per share) ÷ (book value per share)
where,
Book value per share would be
= (Total common equity) ÷ (number of shares)
= ($6 billion) ÷ (800 million shares)
= $7.5 per share
So, the ratio would be
= $32 ÷ $7.5
= 4.267 times
Answer:
b. $1,144 unfavourable.
Explanation:
The computation of the variable overhead efficiency variance is shown below:
= (Actual Hours - Standard Hours) × Standard rate per hour
=(1,700 - 8.1 × 200 units) × $14.30
= 80 × $14.30
= $1,144 unfavorable
hence, the variable overhead efficiency variance is $1,144 unfavorable
Therefore the option b is correct
The answer to this question is Smartphones.
Smartphones have taken over the market all over the world during that period due to the flexibility of their usage.
It's held the capability to do almost any casual technology user do, which pretty much change the course of overall human behavior.