PART A:
Finding the slope of the function f(x)
Choose any two pairs of coordinate from the table; (-1, -15) and (0, -10)
Let (-1, -15) be (x₁, y₁) and (0, -10) be (x₂, y₂)
Slope =
Slope of f(x) = 5
The function g(x) is given in the straight line equation form
Where, is the slope and is the y-intercept
Slope of g(x) = 2
-----------------------------------------------------------------------------------------------------------
g(x) = 2x + 8
Where, the slope (m) = 2 and the y-intercept (c) = 8
The y-intercept of g(x) is 8
for f(x), we can read the y-intercept when x = 0.
From the table, when x = 0, y = -10
The y-intercept of f(x) is -10
Function g(x) has higher y-intercept
Answer:
5 = 6q - 30 - 19
5 = 6q - 49
54 = 6q
9 = q
Step-by-step explanation:
Answer: ![A^{-1}=\left[\begin{array}{cc}\frac{3}{2}&-\frac{1}{2}\\-2&1\end{array}\right]](https://tex.z-dn.net/?f=A%5E%7B-1%7D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%5Cfrac%7B3%7D%7B2%7D%26-%5Cfrac%7B1%7D%7B2%7D%5C%5C-2%261%5Cend%7Barray%7D%5Cright%5D)
<u>Step-by-step explanation:</u>
![\left[\begin{array}{cc}2&1\\4&3\end{array}\right]=\left[\begin{array}{cc}1&0\\0&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D2%261%5C%5C4%263%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%260%5C%5C0%261%5Cend%7Barray%7D%5Cright%5D)
![\dfrac{1}{2}Row\ 1\rightarrow\left[\begin{array}{cc}1&\frac{1}{2}\\4&3\end{array}\right]=\left[\begin{array}{cc}\frac{1}{2}&0\\0&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cdfrac%7B1%7D%7B2%7DRow%5C%201%5Crightarrow%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%26%5Cfrac%7B1%7D%7B2%7D%5C%5C4%263%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%5Cfrac%7B1%7D%7B2%7D%260%5C%5C0%261%5Cend%7Barray%7D%5Cright%5D)
![Row\ 2 -4 \ Row\ 1\rightarrow \left[\begin{array}{cc}1&\frac{1}{2}\\0&1\end{array}\right]=\left[\begin{array}{cc}\frac{1}{2}&0\\-2&1\end{array}\right]](https://tex.z-dn.net/?f=Row%5C%202%20-4%20%5C%20Row%5C%201%5Crightarrow%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%26%5Cfrac%7B1%7D%7B2%7D%5C%5C0%261%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%5Cfrac%7B1%7D%7B2%7D%260%5C%5C-2%261%5Cend%7Barray%7D%5Cright%5D)
![Row\ 1-\dfrac{1}{2}\ Row\ 2 \rightarrow \left[\begin{array}{cc}1&0\\0&1\end{array}\right]=\left[\begin{array}{cc}\frac{3}{2}&-\frac{1}{2}\\-2&1\end{array}\right]](https://tex.z-dn.net/?f=Row%5C%201-%5Cdfrac%7B1%7D%7B2%7D%5C%20Row%5C%202%20%5Crightarrow%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%260%5C%5C0%261%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%5Cfrac%7B3%7D%7B2%7D%26-%5Cfrac%7B1%7D%7B2%7D%5C%5C-2%261%5Cend%7Barray%7D%5Cright%5D)
J:V = 3:2
3:2 x 40 = 120:80
J: 120-15 = 105
V: 80+15 = 95
J:V is now 105:95
The original amount of peas that Julia had at first was 120.