1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mojhsa [17]
3 years ago
15

Find the coordinates of the midpoint of the line segment ab,where a and b have coordinates a(8.0),b(4.6)

Mathematics
1 answer:
umka2103 [35]3 years ago
4 0
\bf \textit{middle point of 2 points }\\ \quad \\
\begin{array}{lllll}
&x_1&y_1&x_2&y_2\\
%  (a,b)
&({{ 8}}\quad ,&{{ 0}})\quad 
%  (c,d)
&({{ 4}}\quad ,&{{ 6}})
\end{array}\qquad
%   coordinates of midpoint 
\left(\cfrac{{{ x_2}} + {{ x_1}}}{2}\quad ,\quad \cfrac{{{ y_2}} + {{ y_1}}}{2} \right)
\\\\\\
\left( \cfrac{4+8}{2}~~,~~\cfrac{6+0}{2} \right)\implies (6~~,~~3)
You might be interested in
A quarterly telephone bill consist of N$79.15 rental plus 4.7 cents for each dialled unit. Sales tax is added at 15%. What is th
lidiya [134]
$4.7 × 915 = 4300.5
$4300.5 + 79.15 = 4379.65
15% of 4379.65 = 656.9475
4379.65 + 656.9745 = 5036.6245
Mrs. Jones' Bill was $5036.63
(Rounded to the nearest 1/10)
8 0
3 years ago
Read 2 more answers
The overhead reach distances of adult females are normally distributed with a mean of 197.5 cm197.5 cm and a standard deviation
fiasKO [112]

Answer:

a) 5.37% probability that an individual distance is greater than 210.9 cm

b) 75.80% probability that the mean for 15 randomly selected distances is greater than 196.00 cm.

c) Because the underlying distribution is normal. We only have to verify the sample size if the underlying population is not normal.

Step-by-step explanation:

To solve this question, we need to understand the normal probability distribution and the central limit theorem.

Normal probability distribution

Problems of normally distributed samples are solved using the z-score formula.

In a set with mean \mu and standard deviation \sigma, the zscore of a measure X is given by:

Z = \frac{X - \mu}{\sigma}

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

Central Limit Theorem

The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean \mu and standard deviation \sigma, the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean \mu and standard deviation s = \frac{\sigma}{\sqrt{n}}.

For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.

In this question, we have that:

\mu = 197.5, \sigma = 8.3

a. Find the probability that an individual distance is greater than 210.9 cm

This is 1 subtracted by the pvalue of Z when X = 210.9. So

Z = \frac{X - \mu}{\sigma}

Z = \frac{210.9 - 197.5}{8.3}

Z = 1.61

Z = 1.61 has a pvalue of 0.9463.

1 - 0.9463 = 0.0537

5.37% probability that an individual distance is greater than 210.9 cm.

b. Find the probability that the mean for 15 randomly selected distances is greater than 196.00 cm.

Now n = 15, s = \frac{8.3}{\sqrt{15}} = 2.14

This probability is 1 subtracted by the pvalue of Z when X = 196. Then

Z = \frac{X - \mu}{\sigma}

By the Central Limit Theorem

Z = \frac{X - \mu}{s}

Z = \frac{196 - 197.5}{2.14}

Z = -0.7

Z = -0.7 has a pvalue of 0.2420.

1 - 0.2420 = 0.7580

75.80% probability that the mean for 15 randomly selected distances is greater than 196.00 cm.

c. Why can the normal distribution be used in part​ (b), even though the sample size does not exceed​ 30?

The underlying distribution(overhead reach distances of adult females) is normal, which means that the sample size requirement(being at least 30) does not apply.

5 0
3 years ago
I have a test tomorrow, I don't get how my teacher got 3 2/3 not this problem. If you answer, please show your work, so I can se
gogolik [260]
Which problem ,???????
3 0
3 years ago
Read 2 more answers
Simplify the expression
lions [1.4K]

The answer is 2/71

:)

5 0
3 years ago
Read 2 more answers
This is a question on my partial fractions homework, but no matter what I try I can't figure it out..
Ierofanga [76]
\dfrac{x^2+x+1}{(x+1)^2(x+2)}=\dfrac{a_1x+a_0}{(x+1)^2}+\dfrac b{x+2}
\implies\dfrac{x^2+x+1}{(x+1)^2(x+2)}=\dfrac{(a_1x+a_0)(x+2)+b(x+1)^2}{(x+1)^2(x+2)}
\implies x^2+x+1=(a_1+b)x^2+(2a_1+a_0+2b)x+(2a_0+b)
\implies\begin{cases}a_1+b=1\\2a_1+a_0+2b=1\\2a_0+b=1\end{cases}\implies a_1=-2,a_0=-1,b=3

So you have

\displaystyle\int_0^2\frac{x^2+x+1}{(x+1)^2(x+2)}\,\mathrm dx=-2\int_0^2\frac x{(x+1)^2}\,\mathrm dx-\int_0^2\frac{\mathrm dx}{(x+1)^2}+3\int_0^2\frac{\mathrm dx}{x+2}
=\displaystyle-2\int_1^3\dfrac{x-1}{x^2}\,\mathrm dx-\int_0^2\frac{\mathrm dx}{(x+1)^2}+3\int_0^2\frac{\mathrm dx}{x+2}

where in the first integral we substitute x\mapsto x+1.

=\displaystyle-2\int_1^3\left(\frac1x-\frac1{x^2}\right)\,\mathrm dx-\frac1{1+x}\bigg|_{x=0}^{x=2}+3\ln|x+2|\bigg|_{x=0}^{x=2}
=-2\left(\ln|x|+\dfrac1x\right)\bigg|_{x=1}^{x=3}-\dfrac23+3(\ln4-\ln2)
=-2\left(\ln3+\dfrac13-1\right)-\dfrac23+3\ln2
=\dfrac23+\ln\dfrac89
4 0
3 years ago
Other questions:
  • What is the formula for the volume of a cone?
    12·2 answers
  • To use a compass to find the midpoint of a line segment, Rebecca draws two arcs of equal radius from each of the two endpoints o
    10·1 answer
  • Pls help me with this
    14·1 answer
  • Please help quickly thanks :)
    8·1 answer
  • Hellpppppppppppppppp
    7·1 answer
  • Có 2 xạ thủ cùng bắn vào một con thú, mỗi người bắn một viên đạn. Xác suất bắn trúng đích của xạ thủ thứ nhất và xạ thủ thứ hai
    13·1 answer
  • The table below contains data on how many pages were read for homework in Mr. Kaplinsky's third period. The equation of the line
    5·1 answer
  • A local department store sells carpet in 4 sizes . Each carpet comes in 3 different qualities. One of the size come in 5 colors
    14·1 answer
  • How many sides does a rhombus HAVE? ​
    15·1 answer
  • Please get it right I can’t get it wrong
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!