B. The equation has one real root.
![\bf \begin{array}{clclll} -6&+&6\sqrt{3}\ i\\ \uparrow &&\uparrow \\ a&&b \end{array}\qquad \begin{cases} r=\sqrt{a^2+b^2}\\ \theta =tan^{-1}\left( \frac{b}{a} \right) \end{cases}\qquad r[cos(\theta )+i\ sin(\theta )]\\\\ -------------------------------\\\\](https://tex.z-dn.net/?f=%5Cbf%20%5Cbegin%7Barray%7D%7Bclclll%7D%0A-6%26%2B%266%5Csqrt%7B3%7D%5C%20i%5C%5C%0A%5Cuparrow%20%26%26%5Cuparrow%20%5C%5C%0Aa%26%26b%0A%5Cend%7Barray%7D%5Cqquad%20%0A%5Cbegin%7Bcases%7D%0Ar%3D%5Csqrt%7Ba%5E2%2Bb%5E2%7D%5C%5C%0A%5Ctheta%20%3Dtan%5E%7B-1%7D%5Cleft%28%20%5Cfrac%7Bb%7D%7Ba%7D%20%5Cright%29%0A%5Cend%7Bcases%7D%5Cqquad%20r%5Bcos%28%5Ctheta%20%29%2Bi%5C%20sin%28%5Ctheta%20%29%5D%5C%5C%5C%5C%0A-------------------------------%5C%5C%5C%5C)

now, notice, there are two valid angles for such a tangent, however, if we look at the complex pair, the "a" is negative and the "b" is positive, that means, "x" is negative and "y" is positive, and that only occurs in the 2nd quadrant, so the angle is in the second quadrant, not on the fourth quadrant.
thus
Answer:
£152.
Step-by-step explanation:
We have been given that a bottle contains 255 coins. 1/3 of the coins are £1.00.
Let us find 1/3 of 255 to find the number of £1 coins.

This means we have £85.
We are also told that 110 of the coins are 50 p coins.


Let us figure out number of 20 p coins by subtracting the number of £1 coins and 50 p coins from 255.





Now let us find total value of the coins contained in the bottle by adding the values of £1 coins, 50 p coins and 20 p coins.


Therefore, the total value of the coins contained in the bottle is £152.
$25.60
20%=.2
since it's 20% OFF, you want to get rid of .2 of the 32.
so 1-.2=.8
and .8 x 32 = 25.60