Hi!
To solve this, we must make an equation in y = mx + b form, where m is the slope and b is the y-intercept.
Since we are looking at a graph with points, it saves us a TON of work, and all we have to do is simply look at the graph. We only need to find m and b, that's it!
M is the slope, and the slope can be represented by the change between points on a line, also known as <em>rise/run. </em>
If we start at point (-4, -1), and go to point (-2, 0), we can see that it goes up 1 and right 2, which would be represented as 1/2.
B is the y-intercept, and that is simply the point that is on the y-axis, which is the point (0, 1), so our number would be 1.
Therefore, plugging these numbers into the equation, our equation is y = <em>1/2</em>x + <em>1</em>
<em></em>
Hope this helps! :D
Answer:
Subtract 8.5
Step-by-step explanation:
To solve the equation, y has to be isolated (only y will be on one side of the equation)
To do this, we have to get rid of the 8.5, so it has to be subtracted from both sides.
So, the correct answer is subtract 8.5
Answer:
P(success at first attempt) = 0.1353
Step-by-step explanation:
This question follows poisson distribution. Thus, the formula is;
P(k) = (e^(-G) × (G)k)/k!
where;
G is number of frames generated in one frame transmission time(or frame slot time)
Let's find G.
To do this, we need to find number of frames generated in 1 slot time which is given as 50 ms.
Now, in 1000 ms, the number of frames generated = 50
Thus; number of frames generated in 50 ms is;
G = (50/1000) × 50
G = 2.5
To find the chance of success on the first attempt will be given by;
P(success at first attempt) = P(0) = e^(-G) = e^(-2) = 0.1353