1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
natita [175]
3 years ago
14

Which quadrilateral has exactly one pair of parallel sides

Mathematics
2 answers:
vladimir1956 [14]3 years ago
7 0
The trapezoid is a quadrilateral and it has exactly one pair of parallel sides.
LekaFEV [45]3 years ago
4 0
A rectangle has two parallel sides top and bottom and right and left sides
You might be interested in
Does anyone know the answers to I-ready ( Math Lvl F: Understanding Algerbretic Expressions)
sergij07 [2.7K]

Answer:

B 10x+5

Step-by-step explanation:

:)

5 0
3 years ago
What's <br> b-a=<br> c-b=<br> im confused someone help pleaseee
Hitman42 [59]

Answer: n minus c would equal c c minus b would equal z

Step-by-step explanation:

3 0
3 years ago
BRAINLIESSTTTT ASAP !!!!!!!!!! 20 pointssss
Mars2501 [29]
Answers:  
_____________________________________________________
   Part A)  " (3x + 4) " units  . 
_____________________________________________________
   Part B)  "The dimensions of the rectangle are:

                             " (4x + 5y) " units ;  <u>AND</u>:  " (4x − 5y)"  units."
_____________________________________________________

Explanation for  Part A):
_____________________________________________________

Since each side length of a square is the same; 
   
    Area = Length * width = L * w ;  L = w  = s = s ;

      in which:  " s = side length" ;

So, the Area of a square, "A"  = L * w = s * s = s² ;

{<u>Note</u>:  A "square" is a rectangle with 4 (four) equal sides.}.

→  Each side length, "s", of a square is equal.

Given:  s² = "(9x² + 24x + 16)" square units ;

Find "s" by factoring: "(9x² + 24x + 16)" completely:

   →  " 9x² + 24x + 16 ";

Factor by "breaking into groups" :

"(9x² + 24x + 16)"  = 

    →  "(9x² + 12x) (12x + 16)" ;
_______________________________________________________

Given:   " (9x² + 24x + 16) " ; 
_______________________________________________________
Let us start with the term:
_______________________________________________________

" (9x² + 12x) " ; 

    →  Factor out a "3x" ;  → as follows:
_______________________________________

    → " 3x (3x + 4) " ; 

Then, take the term:
_______________________________________
    → " (12x + 16) " ;

And factor out a "4" ;   →  as follows:
_______________________________________

    → " 4 (3x + 4) " 
_______________________________________
We have:

" 9x² + 24x + 16 " ;

    =  " 3x (3x + 4)  +  4(3x + 4) " ;
_______________________________________
Now, notice the term:  "(3x + 4)" ; 

We can "factor out" this term:

3x (3x + 4)  +  4(3x + 4)  = 

     →  " (3x + 4) (3x + 4) " .  → which is the fully factored form of:

                                                   " 9x² + 24x + 16 "  ; 
____________________________________________________
     →  Or; write:  "  (3x + 4) (3x + 4)" ; as:  " (3x + 4)² " .
____________________________________________________
     →  So,  "s² = 9x² + 24x + 16 " ; 

Rewrite as:  " s² = (3x + 4)² " .

     →  Solve for the "positive value of "s" ; 

     →  {since the "side length of a square" cannot be a "negative" value.}.
____________________________________________________
     →  Take the "positive square root of EACH SIDE of the equation; 
              to isolate "s" on one side of the equation; & to solve for "s" ;

     →  ⁺√(s²)  =  ⁺√[(3x + 4)²]   '

To get:

     →  s  = " (3x + 4)" units .
_______________________________________________________

Part A):  The answer is:  "(3x + 4)" units.
____________________________________________________

Explanation for Part B):

_________________________________________________________<span>

The area, "A" of a rectangle is:

    A = L * w ;  

 in which "A" is the "area" of the rectangle;
                "L" is the "length" of the rectangle; 
                "w" is the "width" of the rectangle; 
_______________________________________________________
  Given:  " A = </span>(16x² − 25y²) square units" ;  
   
       →  We are asked to find the dimensions, "L" & "w" ;
       →  by factoring the given "area" expression completely:
____________________________________________________
  → Factor:  " (16x² − 25y²) square units " completely '

Note that:  "16" and: "25" are both "perfect squares" ;
      
We can rewrite: " (16x² − 25y²) "  ;   as:

       =   " (4²x²)  −  (5²y²) " ; and further rewrite the expression:
________________________________________________________
Note:  
________________________________________________________
" (16x²) " ;  can be written as:  "(4x)² " ;

 ↔ " (4x)²  =  "(4²)(x²)" = 16x² "


Note:  The following property of exponents:

         →  (xy)ⁿ = xⁿ yⁿ ;    →  As such:  " 16x² = (4²x²) = (4x)² " . 
_______________________________________________________
Note:
_______________________________________________________

     →   " (25x²) " ;  can be written as:  " (5x)² " ; 

        ↔   "( 5x)²  =  "(5²)(x²)" = 25x² " ; 

Note:  The following property of exponents:

         →  (xy)ⁿ = xⁿ yⁿ ;    →  As such:  " 25x² = (5²x²) = (5x)² " . 
______________________________________________________

→  So, we can rewrite:  " (16x² − 25y²) " ;  

as:  " (4x)² − (5y)² " ;   
 
    → {Note:  We substitute: "(4x)² "  for "(16x²)" ; & "(5y)² "  for "(25y²)" .} . ; 
_______________________________________________________
→  We have:  " (4x)² − (5y)² " ;

→  Note that we are asked to "factor completely" ; 

→  Note that:  " x² − y² = (x + y) (x − y) " ;

      → {This property is known as the "<u>difference of squares</u>".}.

→ As such:  " (4x)² − (5y)² " = " (4x + 5y) (4x − 5y) " .
_______________________________________________________
Part B):  The answer is:  "The dimensions of the rectangle are:

                              " (4x + 5y) " units ;  AND:  " (4x − 5y)"  units."
_______________________________________________________
7 0
3 years ago
Find the 64th term of the following arithmetic sequence.<br><br> 17, 26, 35, 44, ...
goblinko [34]

take the difference

26-17=9

35-26=9

the first term is 17

and the nth term is 64

use the formula

tn=a+(n-1) d

let a be 17

let n be 64

let d be 9

then you substitute

t64=17+(64-1)9

=17+(63)9

=17+567

=584

so the 64th term is 584.

8 0
4 years ago
X + y = 7<br> 2x - 3y = -21
kotykmax [81]
There is only one solution

When you graph both equations, they intersect therefore the intersection point tells you there is one solution. If it was infinitely many solutions then it would be the same line. If it was no solution then the graph would show to parallel lines.

3 0
3 years ago
Read 2 more answers
Other questions:
  • the admission fee to an amusement park is $27.it cost an additional p dollars to rent a locker to hold your belongings. the tota
    11·1 answer
  • tasha's bedroom is shaped like a square. The room has an area of 169 ft what is the length of one side of tasha's bedroom?
    13·2 answers
  • If f(x) = 3x^2 +1 and g(x) = 1-x, what is the value of (f-g)(2)
    5·1 answer
  • Which function is represented by the graph
    15·1 answer
  • Find the LCM of 8, 12, and 26
    9·1 answer
  • OMG DUE IN 40 MINUTESSSS!!
    6·1 answer
  • Question 3
    12·1 answer
  • Patrick is keeping track of how far he jogs each morning.
    15·1 answer
  • In a certain village of Nepal, all the people speak either Nepali, or Maithili
    5·1 answer
  • Hey guys what is point Q on this one??
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!