9514 1404 393
Answer:
- annually: 9.01 years
- monthly: 8.69 years
- daily: 8.67 years
- continuously: 8.66 years
Step-by-step explanation:
For interest compounded in discrete intervals, the formula is ...
A = P(1 +r/n)^(nt)
We want to find t for P=1 and A=2, so we have ...
2 = (1 +r/n)^(nt)
ln(2) = nt·ln(1+r/n)
t = ln(2)/(n·ln(1+r/n))
A table of values for r=0.08 is attached.
__
For continuous compounding, the formula is ...
A = Pe^(rt)
t = ln(A/P)/r = ln(2)/0.08 ≈ 8.66434 . . . . years
__
- annually: 9.01 years
- monthly: 8.69 years
- daily: 8.67 years
- continuously: 8.66 years
Answer:
x = ± 
It didn't insert but just look up the quadratic formula.
x = ± root [(b²-4ac]/2a]
Answer:
Cada uno de ellos gana:
S/. 24
S/. 36
Step-by-step explanation:
Planteamiento:
a + b = 60
a = 12 + b
Desarrollo:
sustituyendo el valor de la segunda ecuación del planteamiento en la primer ecuación del planteamiento:
(12+b) + b = 60
2b + 12 = 60
2b = 60 - 12
2b = 48
b = 48/2
b = 24
de la segunda ecuación del planteamiento:
a = 12 + b
a = 12 + 24
a = 36
Check:
24 + 36 = 60
Hello,
26.
period=4
max=3
min=-3
27:
p=8
max=5
min=0
28:
p=8
max= 4 (twice)
min=-4 (twice)
Answer:
2.2 metres squared
Step-by-step explanation:
We need to find the area of this trapezoid.
The area of a trapezoid is denoted by:
, where
and
are the parallel bases and h is the height
Here, we already know the lengths of the two bases; they are 0.9 metres and 2.3 metres. However, we need to find the length of the height.
Notice that one of the angles is marked 45 degrees. Let's draw a perpendicular line from top endpoint of the segment labelled 0.9 to the side labelled 2.3. We now have a 45-45-90 triangle with hypotenuse 2.0 metres. As one of such a triangle's properties, we can divide 2.0 by √2 to get the length of both legs:
2.0 ÷ √2 = √2 ≈ 1.414 ≈ 1.4
Thus, the height is h = 1.4 metres. Now plug all these values we know into the equation to find the area:


The answer is thus 2.2 metres squared.
<em>~ an aesthetics lover</em>