Answer:
Rate of change in elevation = 0.6 in/year
Step-by-step explanation:
Note:
Current elevation (Missing) = 7,602 feet
Given:
Old elevation = 7,602 feet
Number of year = 7,600
Find:
Rate of change in elevation
Computation:
Change in elevation = 7,602 - 7,600
Change in elevation = 2 ft
Change in elevation = 2 x 12 = 24 inches
Rate of change in elevation = 24 / 40
Rate of change in elevation = 0.6 in/year
The system of equations has one solution
Hmm if I'm not mistaken, is just an "ordinary" annuity, thus
![\bf \qquad \qquad \textit{Future Value of an ordinary annuity} \\\\ A=pymnt\left[ \cfrac{\left( 1+\frac{r}{n} \right)^{nt}-1}{\frac{r}{n}} \right] \\\\\\](https://tex.z-dn.net/?f=%5Cbf%20%5Cqquad%20%5Cqquad%20%5Ctextit%7BFuture%20Value%20of%20an%20ordinary%20annuity%7D%0A%5C%5C%5C%5C%0AA%3Dpymnt%5Cleft%5B%20%5Ccfrac%7B%5Cleft%28%201%2B%5Cfrac%7Br%7D%7Bn%7D%20%5Cright%29%5E%7Bnt%7D-1%7D%7B%5Cfrac%7Br%7D%7Bn%7D%7D%20%5Cright%5D%0A%5C%5C%5C%5C%5C%5C)
Well when the dog runs the rabbit runs so to find out if the dog reaches the rabbit and how long it will take, we will use multiples.
DOG: 200 400 600
RABBIT:150 300 450 600
Yes the dog will reach the rabbit and it will take 3 minutes long.