Given that 4000 items are checked in one month, let the number of detective items be represented as y.
Quality control finds on average that 0.026% of the items in the factory are detective. This implies that
![\text{Number of }\det ective\text{ items = }\frac{\text{0.026}}{100}\times\text{Total number of items checked}](https://tex.z-dn.net/?f=%5Ctext%7BNumber%20of%20%7D%5Cdet%20ective%5Ctext%7B%20items%20%3D%20%7D%5Cfrac%7B%5Ctext%7B0.026%7D%7D%7B100%7D%5Ctimes%5Ctext%7BTotal%20number%20of%20items%20checked%7D)
When 4000 items are checked, we have the number of detective items to be evaluated as
![\begin{gathered} \text{Number of }\det ective\text{ items = }\frac{\text{0.026}}{100}\times\text{Total number of items checked} \\ y=\frac{0.026}{100}\times4000 \\ \Rightarrow y=1.04 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5Ctext%7BNumber%20of%20%7D%5Cdet%20ective%5Ctext%7B%20items%20%3D%20%7D%5Cfrac%7B%5Ctext%7B0.026%7D%7D%7B100%7D%5Ctimes%5Ctext%7BTotal%20number%20of%20items%20checked%7D%20%5C%5C%20y%3D%5Cfrac%7B0.026%7D%7B100%7D%5Ctimes4000%20%5C%5C%20%5CRightarrow%20y%3D1.04%20%5Cend%7Bgathered%7D)
Hence, the number of detective items is 1.04.
I would say 2/5 chance since 1 is neither prime or composite
Answer:
how many numbers have absolute value 3? zero is your answer
how many numbers have absolute value a, if a>0? your answer is also zero
Step-by-step explanation:
Answer:
$45.50
Step-by-step explanation:
1. $65.00 ÷ 100 = 0.65
2. 0.65 x 30 = $19.50
3. $65.00 - $19.50 = $45.50
Answer:
<h2>x = 2, y = 6 → (2, 6)</h2>
Step-by-step explanation:
![\bold{ELIMINATION\ METHOD}\\\\\left\{\begin{array}{ccc}y=-x+8\\y=x+4&\TEXT{change the signs}\end{array}\right\\\underline{+\left\{\begin{array}{ccc}y=-x+8\\-y=-x-4\end{array}\right}\qquad\text{add both sides of the equations}\\.\qquad0=-2x+4\qquad\text{add}\ 2x\ \text{to both sides}\\.\qquad2x=4\qquad\text{divide both sides by 2}\\.\qquad\boxed{x=2}\\\\\text{Put it to the second equation}\\y=2+4\\\boxed{y=6}](https://tex.z-dn.net/?f=%5Cbold%7BELIMINATION%5C%20METHOD%7D%5C%5C%5C%5C%5Cleft%5C%7B%5Cbegin%7Barray%7D%7Bccc%7Dy%3D-x%2B8%5C%5Cy%3Dx%2B4%26%5CTEXT%7Bchange%20the%20signs%7D%5Cend%7Barray%7D%5Cright%5C%5C%5Cunderline%7B%2B%5Cleft%5C%7B%5Cbegin%7Barray%7D%7Bccc%7Dy%3D-x%2B8%5C%5C-y%3D-x-4%5Cend%7Barray%7D%5Cright%7D%5Cqquad%5Ctext%7Badd%20both%20sides%20of%20the%20equations%7D%5C%5C.%5Cqquad0%3D-2x%2B4%5Cqquad%5Ctext%7Badd%7D%5C%202x%5C%20%5Ctext%7Bto%20both%20sides%7D%5C%5C.%5Cqquad2x%3D4%5Cqquad%5Ctext%7Bdivide%20both%20sides%20by%202%7D%5C%5C.%5Cqquad%5Cboxed%7Bx%3D2%7D%5C%5C%5C%5C%5Ctext%7BPut%20it%20to%20the%20second%20equation%7D%5C%5Cy%3D2%2B4%5C%5C%5Cboxed%7By%3D6%7D)
![\bold{SUBSTITUTION\ METHOD}\\\\\left\{\begin{array}{ccc}y=-x+8&(1)\\y=x+4&(2)\end{array}\right\\\\\text{Substitute (1) to (2)}\\\\-x+8=x+4\qquad\text{subtract 8 from both sides}\\-x=x-4\qquad\text{subtract}\ x\ \text{from both sides}\\-x-x=-4\\-2x=-4\qquad\text{divide both sides by (-2)}\\\boxed{x=2}\\\\\text{Put it to the second equation}\\y=2+4\\\boxed{y=6}](https://tex.z-dn.net/?f=%5Cbold%7BSUBSTITUTION%5C%20METHOD%7D%5C%5C%5C%5C%5Cleft%5C%7B%5Cbegin%7Barray%7D%7Bccc%7Dy%3D-x%2B8%26%281%29%5C%5Cy%3Dx%2B4%26%282%29%5Cend%7Barray%7D%5Cright%5C%5C%5C%5C%5Ctext%7BSubstitute%20%281%29%20to%20%282%29%7D%5C%5C%5C%5C-x%2B8%3Dx%2B4%5Cqquad%5Ctext%7Bsubtract%208%20from%20both%20sides%7D%5C%5C-x%3Dx-4%5Cqquad%5Ctext%7Bsubtract%7D%5C%20x%5C%20%5Ctext%7Bfrom%20both%20sides%7D%5C%5C-x-x%3D-4%5C%5C-2x%3D-4%5Cqquad%5Ctext%7Bdivide%20both%20sides%20by%20%28-2%29%7D%5C%5C%5Cboxed%7Bx%3D2%7D%5C%5C%5C%5C%5Ctext%7BPut%20it%20to%20the%20second%20equation%7D%5C%5Cy%3D2%2B4%5C%5C%5Cboxed%7By%3D6%7D)