Answer:
a number. 5. b number. 7 fourth one. c number. 1. d number 0
Step-by-step explanation:
mark me as brainliest
Hello!
To solve this question, we must first add the exponent into the number 7 before multiplying it by the number 6.
7 to the second power simply means 7x7.
7x7= 49
Now that the exponent is in the equation, we can multiply 49 by 6 to find your final answer.
6 x 49 = 294
I hope this helps answer your question! Have a great day!
-MMMski
Answer:
y=3
Step-by-step explanation:
5y-2(3)=9
5y-6=9
+6 +6
5y=15
/5 /5
y=3
<span><span><span>1. An altitude of a triangle is a line segment from a vertex perpendicular to the opposite side. Find the equations of the altitudes of the triangle with vertices (4, 5),(-4, 1) and (2, -5). Do this by solving a system of two of two of the altitude equations and showing that the intersection point also belongs to the third line. </span>
(Scroll Down for Answer!)</span><span>Answer by </span>jim_thompson5910(34047) (Show Source):You can put this solution on YOUR website!
<span>If we plot the points and connect them, we get this triangle:
Let point
A=(xA,yA)
B=(xB,yB)
C=(xC,yC)
-------------------------------
Let's find the equation of the segment AB
Start with the general formula
Plug in the given points
Simplify and combine like terms
So the equation of the line through AB is
-------------------------------
Let's find the equation of the segment BC
Start with the general formula
Plug in the given points
Simplify and combine like terms
So the equation of the line through BC is
-------------------------------
Let's find the equation of the segment CA
Start with the general formula
Plug in the given points
Simplify and combine like terms
So the equation of the line through CA is
So we have these equations of the lines that make up the triangle
So to find the equation of the line that is perpendicular to that goes through the point C(2,-5), simply negate and invert the slope to get
Now plug the slope and the point (2,-5) into
Solve for y and simplify
So the altitude for vertex C is
Now to find the equation of the line that is perpendicular to that goes through the point A(4,5), simply negate and invert the slope to get
Now plug the slope and the point (2,-5) into
Solve for y and simplify
So the altitude for vertex A is
Now to find the equation of the line that is perpendicular to that goes through the point B(-4,1), simply negate and invert the slope to get
Now plug the slope and the point (-4,1) into
Solve for y and simplify
So the altitude for vertex B is
------------------------------------------------------------
Now let's solve the system
Plug in into the first equation
Add 2x to both sides and subtract 2 from both sides
Divide both sides by 3 to isolate x
Now plug this into
So the orthocenter is (-2/3,1/3)
So if we plug in into the third equation , we get
So the orthocenter lies on the third altitude
</span><span>
</span></span>