Area = 91 in²
Step-by-step explanation:
Hope it helps you!
he had 150.
Step-by-step explanation:
i cant explain
Answer:
1+i
Step-by-step explanation:
To find the 8th roots of unity, you have to find the trigonometric form of unity.
1. Since
then

and

This gives you 
Thus,

2. The 8th roots can be calculated using following formula:
![\sqrt[8]{z}=\{\sqrt[8]{|z|} (\cos\dfrac{\varphi+2\pi k}{8}+i\sin \dfrac{\varphi+2\pi k}{8}), k=0,\ 1,\dots,7\}.](https://tex.z-dn.net/?f=%5Csqrt%5B8%5D%7Bz%7D%3D%5C%7B%5Csqrt%5B8%5D%7B%7Cz%7C%7D%20%28%5Ccos%5Cdfrac%7B%5Cvarphi%2B2%5Cpi%20k%7D%7B8%7D%2Bi%5Csin%20%5Cdfrac%7B%5Cvarphi%2B2%5Cpi%20k%7D%7B8%7D%29%2C%20k%3D0%2C%5C%201%2C%5Cdots%2C7%5C%7D.)
Now
at k=0, ![z_0=\sqrt[8]{1} (\cos\dfrac{0+2\pi \cdot 0}{8}+i\sin \dfrac{0+2\pi \cdot 0}{8})=1\cdot (1+0\cdot i)=1;](https://tex.z-dn.net/?f=z_0%3D%5Csqrt%5B8%5D%7B1%7D%20%28%5Ccos%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%200%7D%7B8%7D%2Bi%5Csin%20%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%200%7D%7B8%7D%29%3D1%5Ccdot%20%281%2B0%5Ccdot%20i%29%3D1%3B)
at k=1, ![z_1=\sqrt[8]{1} (\cos\dfrac{0+2\pi \cdot 1}{8}+i\sin \dfrac{0+2\pi \cdot 1}{8})=1\cdot (\dfrac{\sqrt{2}}{2}+i\dfrac{\sqrt{2}}{2})=\dfrac{\sqrt{2}}{2}+i\dfrac{\sqrt{2}}{2};](https://tex.z-dn.net/?f=z_1%3D%5Csqrt%5B8%5D%7B1%7D%20%28%5Ccos%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%201%7D%7B8%7D%2Bi%5Csin%20%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%201%7D%7B8%7D%29%3D1%5Ccdot%20%28%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%2Bi%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%29%3D%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%2Bi%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%3B)
at k=2, ![z_2=\sqrt[8]{1} (\cos\dfrac{0+2\pi \cdot 2}{8}+i\sin \dfrac{0+2\pi \cdot 2}{8})=1\cdot (0+1\cdot i)=i;](https://tex.z-dn.net/?f=z_2%3D%5Csqrt%5B8%5D%7B1%7D%20%28%5Ccos%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%202%7D%7B8%7D%2Bi%5Csin%20%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%202%7D%7B8%7D%29%3D1%5Ccdot%20%280%2B1%5Ccdot%20i%29%3Di%3B)
at k=3, ![z_3=\sqrt[8]{1} (\cos\dfrac{0+2\pi \cdot 3}{8}+i\sin \dfrac{0+2\pi \cdot 3}{8})=1\cdot (-\dfrac{\sqrt{2}}{2}+i\dfrac{\sqrt{2}}{2})=-\dfrac{\sqrt{2}}{2}+i\dfrac{\sqrt{2}}{2};](https://tex.z-dn.net/?f=z_3%3D%5Csqrt%5B8%5D%7B1%7D%20%28%5Ccos%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%203%7D%7B8%7D%2Bi%5Csin%20%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%203%7D%7B8%7D%29%3D1%5Ccdot%20%28-%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%2Bi%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%29%3D-%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%2Bi%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%3B)
at k=4, ![z_4=\sqrt[8]{1} (\cos\dfrac{0+2\pi \cdot 4}{8}+i\sin \dfrac{0+2\pi \cdot 4}{8})=1\cdot (-1+0\cdot i)=-1;](https://tex.z-dn.net/?f=z_4%3D%5Csqrt%5B8%5D%7B1%7D%20%28%5Ccos%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%204%7D%7B8%7D%2Bi%5Csin%20%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%204%7D%7B8%7D%29%3D1%5Ccdot%20%28-1%2B0%5Ccdot%20i%29%3D-1%3B)
at k=5, ![z_5=\sqrt[8]{1} (\cos\dfrac{0+2\pi \cdot 5}{8}+i\sin \dfrac{0+2\pi \cdot 5}{8})=1\cdot (-\dfrac{\sqrt{2}}{2}-i\dfrac{\sqrt{2}}{2})=-\dfrac{\sqrt{2}}{2}-i\dfrac{\sqrt{2}}{2};](https://tex.z-dn.net/?f=z_5%3D%5Csqrt%5B8%5D%7B1%7D%20%28%5Ccos%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%205%7D%7B8%7D%2Bi%5Csin%20%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%205%7D%7B8%7D%29%3D1%5Ccdot%20%28-%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D-i%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%29%3D-%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D-i%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%3B)
at k=6, ![z_6=\sqrt[8]{1} (\cos\dfrac{0+2\pi \cdot 6}{8}+i\sin \dfrac{0+2\pi \cdot 6}{8})=1\cdot (0-1\cdot i)=-i;](https://tex.z-dn.net/?f=z_6%3D%5Csqrt%5B8%5D%7B1%7D%20%28%5Ccos%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%206%7D%7B8%7D%2Bi%5Csin%20%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%206%7D%7B8%7D%29%3D1%5Ccdot%20%280-1%5Ccdot%20i%29%3D-i%3B)
at k=7, ![z_7=\sqrt[8]{1} (\cos\dfrac{0+2\pi \cdot 7}{8}+i\sin \dfrac{0+2\pi \cdot 7}{8})=1\cdot (\dfrac{\sqrt{2}}{2}-i\dfrac{\sqrt{2}}{2})=\dfrac{\sqrt{2}}{2}-i\dfrac{\sqrt{2}}{2};](https://tex.z-dn.net/?f=z_7%3D%5Csqrt%5B8%5D%7B1%7D%20%28%5Ccos%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%207%7D%7B8%7D%2Bi%5Csin%20%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%207%7D%7B8%7D%29%3D1%5Ccdot%20%28%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D-i%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%29%3D%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D-i%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%3B)
The 8th roots are

Option C is icncorrect.
Answer:
Both of these examples are wrong. You cannot add/subtract integers and square roots together, however, you could add square roots together if they have the same number under the square root. For example, 2 - 2√6 will stay as 2 - 2√6 because they aren't like terms. 25 + 5√5 + 5√5 + 5 = 30 + 10√5 because 25 + 5 = 30 and 5√5 + 5√5 = 10√5. We can add 5√5 and 5√5 together because they have the same number under the square root. If we were to compute √2 + √3, we would just leave it as is because they don't have the same number under the square root.