1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
natali 33 [55]
3 years ago
6

A line has a slope of -1/2 and a y-intercept of –2. What is the x-intercept of the line? –4, –1, 1 ,4

Mathematics
1 answer:
grin007 [14]3 years ago
5 0
To get the x-intercept, we simply set y = 0 and solve for "x".

now, we have the slope and the y-intercept, well, let's plug those two in the slope-intercept form, reason why is called that anyway,

\bf y=\stackrel{slope}{-\cfrac{1}{2}}x\stackrel{y-intercept}{-2}\implies 0=-\cfrac{x}{2}-2\implies \cfrac{x}{2}=-2\implies x=-4
You might be interested in
Which of the following coordinate pairs make the equation x - 9y = 12 true?
Natalka [10]
(12, 0)

12-9(0)=12
12-0=12
12=12
7 0
3 years ago
What is 5.092 rounded to the nearest hundredth?
goblinko [34]
5.09 because 2 is less then 5 so you round down
6 0
3 years ago
Read 2 more answers
Which is bigger 2m or 275cm
aliina [53]

Answer:

275.

Step-by-step explanation:

If you convert 2m into CM you get 200.
If you convert 275 cm into M you get 2.75. So 275cm is bigger.

8 0
2 years ago
Read 2 more answers
at a maximum speed, an airolane travels 1680 miles against the windin 5 hours. Flying with the wind, the plane can travel the sa
Licemer1 [7]

Answer:

Plane Speed (x) = 378 mph

Step-by-step explanation:

Equation

d = r * t

Givens

With the wind

  • d = 1680 miles
  • t = 4 hours
  • r = x + y

Against the wind

  • d = 1680
  • t = 5 hours
  • r = x - y

Equation

The distances are the same, so you can solve for x in terms of y and then deal with the actual distance.

(x + y)*4 = (x - y)*5                   Remove the brackets on both sides

Solution

  • 4x + 4y = 5x - 5y                     Subtract 4x from both sides
  • 4y = -4x + 5x - 5y                    Combine
  • 4y = x - 5y                               Add 5y to both sides                      
  • 5y + 4y = x
  • x = 9y

Solution part 2

Now take one of the distance formulas and solve for x first then y.

  • (x - y)*5 = 1680               Substitute 9y for x
  • (9y - y)*5 = 1680             Subtract on the left
  • 8y * 5 = 1680                  Multiply on the left
  • 40y = 1680                     Divide by 40
  • y = 1680/40            
  • y = 42                             That's the speed of the wind.
  • (x - y)*5 = 1680               Substitute the wind speed for y
  • (x - 42)*5 = 1680             Divide both sides by 5
  • (x - 42) = 1680 / 5            Do the division on the right
  • (x - 42) = 336                   Add 42 to both sides.
  • x = 336 + 42
  • x = 378 mph                    Plane's speed

7 0
4 years ago
Simplify each expression. Assume that all variables are positive.
kozerog [31]
Q1. The answer is  \frac{8x^{3}y^{6}  }{27}

( \frac{16 x^{5} y^{10}}{81x y^{2} } )^{ \frac{3}{4} }= ( \frac{16}{81}* \frac{ x^{5} }{x}* \frac{ y^{10} }{y^{2}}   )^{ \frac{3}{4} } \\  \\ 
  \frac{ x^{a} }{ x^{b} }= x^{a-b}  \\  \\ 
( \frac{16}{81}* \frac{ x^{5} }{x}*\frac{ y^{10} }{y^{2}}   )^{ \frac{3}{4} }}=( \frac{16}{81 }* x^{5-1}* y^{10-2})^{ \frac{3}{4} }=( \frac{16}{81 }* x^{4}* y^{8})^{ \frac{3}{4} }= \\  \\ = (\frac{16}{18} )^{ \frac{3}{4} }*(x^{4})^{ \frac{3}{4} }*(y^{8})^{ \frac{3}{4} }=
\frac{(16)^{ \frac{3}{4} }}{(18)^{ \frac{3}{4} }}*(x^{4})^{ \frac{3}{4} }*(y^{8})^{ \frac{3}{4} }=\frac{( 2^{4} )^{ \frac{3}{4} }}{( 3^{4} )^{ \frac{3}{4} }}*(x^{4})^{ \frac{3}{4} }*(y^{8})^{ \frac{3}{4} } \\  \\ 
 (x^{a} )^{b} = x^{a*b}  \\  \\ 
\frac{( 2^{4} )^{ \frac{3}{4} }}{( 3^{4} )^{ \frac{3}{4} }}*(x^{4})^{ \frac{3}{4} }*(y^{8})^{ \frac{3}{4} } =  \frac{ 2^{4* \frac{3}{4} } }{ 3^{4* \frac{3}{4} } } * x^{4* \frac{3}{4} } * y^{8*\frac{3}{4}} = \frac{ 2^{3} }{ 3^{3} } * x^{3} *y^{6} = 
= \frac{8x^{3}y^{6}  }{27}

Q2. The answer is 1/16

(-64) ^ \frac{-2}{3} =(-1* 2^{6} ) ^ \frac{-2}{3}=(-1)^ \frac{-2}{3} *(2^{6} ) ^ \frac{-2}{3} \\\\x^{-a} =  \frac{1}{ x^{a} } \\\\(-1)^ \frac{-2}{3} *(2^{6} ) ^ \frac{-2}{3} = \frac{1}{(-1)^ \frac{2}{3}} *\frac{1}{(2^{6})^ \frac{2}{3}} \\  \\  (x^{a} )^{b}=x^{a*b} \\\\x^{ \frac{a}{b} = \sqrt[b]{ x^{a} } }  \\  \\ 

\frac{1}{(-1)^ \frac{2}{3}} *\frac{1}{2^{6*\frac{2}{3}}} = \frac{1}{ \sqrt[3]{(-1)^{2} } } * \frac{1}{ 2^{4} } =  \frac{1}{ \sqrt[3]{1} } * \frac{1}{16} = \frac{1}{1} * \frac{1}{16}= \frac{1}{16}


Q3. The answer is a^{ \frac{7}{6} }

a^{ \frac{2}{3} } * a^{ \frac{1}{2} }  \\  \\ 
 x^{a}* x^{b}  =x^{a+b}  \\  \\ 
a^{ \frac{2}{3} } * a^{ \frac{1}{2} }= a^{ \frac{2}{3} + \frac{1}{2} } =a^{ \frac{2*2}{3*2} + \frac{1*3}{2*3} }=a^{ \frac{4}{6} + \frac{3}{6} }=a^{ \frac{4+3}{6} }=a^{ \frac{7}{6} }
7 0
3 years ago
Other questions:
  • Solve for x using technology 2 log 3(x-1)=log(4 x 2-25)
    8·1 answer
  • The area of a right triangle with one leg measuring 5 ft. and hypotenuse measuring 13 ft. is_______ a0. Type a numerical answer
    8·1 answer
  • On a particular day, Sylvia worked 3 hours and 45 minutes, while Paul worked 4 hours and 35 minutes. What’s the ratio of Sylvia’
    15·1 answer
  • Please solve the eqution<br> Cos4x + cos2x - 2 =0
    15·1 answer
  • What value of w is a solution to this equation?<br> w/2 = 6<br> w = 10 or w = 12
    11·2 answers
  • What is the square root of 15
    7·1 answer
  • Help math pls due in 5 min
    14·1 answer
  • A bank account has a beginning balance of $460.00. After 6 months, the balance in the account has increased to
    9·1 answer
  • You work on a concrete crew starting a construction project. once the pouring begins, it must continue nonstop until it is compl
    6·1 answer
  • Cars5439561499TotalThe table shows the number of cars and trucks that used a certain toll road on a particular day. The number o
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!