Photophosphorylation is a process that occurs during photosynthesis in plants. It is the conversion of ADP (Adenosine Diphosphate) into ATP (Adenosine Triphosphate) using light energy. ATP (Adenosine Triphosphate) is the energy currency of life of all living organisms. Without ATP, cells will not be able to perform their proper functions.
<span>
Through the process of phosphorylation, light energy is used to create electron donors and electron acceptors that move spontaneously through the process of electron transport chains. </span>
Allele frequency is determined by looking at the dominant and recessive allele of a genotype.
Using the given, we can come up with the following computation for the allele frequency:
allele A = 100/300 allele B = 50/300 allele O = 150/300
Hence, the frequency of allele A is 0.33 or 33%, allele B is .17 or 17% and allele O is 0.50 or 50%.
Clown fish and sea anemones.
Answer:
- Hydrogen ion concentration is lower in the mitochondrial matrix than in the intermembrane space.
- Oxidative phosphorylation relies on the hydrogen ion concentration gradient generated and maintained by the electron transport chain.
- Hydrogen ions enter the mitochondrial matrix via facilitated diffusion.
Explanation:
Oxidative phosphorylation is a metabolic pathway by which Adenosine Triphosphate (ATP) molecules are produced through the transfer of electrons from NADH or FADH2 to molecular oxygen (O2). The hydrogen (H+) ions are pumped from the mitochondrial matrix to the intermembrane space, and this movement of protons generates an electrochemical gradient across the mitochondrial membrane which is used by the ATP synthase to produce ATP. This gradient is generated by the movement of electrons through a series of electron carriers (e.g., cytochrome c and ubiquinone) that are embedded in the inner mitochondrial membrane. The movement of these H+ ions across the semipermeable mitochondrial membrane moving down their electrochemical gradient is named chemiosmosis and is an example of facilitated diffusion.