1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ehidna [41]
3 years ago
6

In March 2007​, the U.S. unemployment rate was 4.4 percent. In August 2008​, the unemployment rate was 6.1 percent. Predict what

happened to unemployment between March 2007 and August 2008​, if the labor force was constant. If the labor force remained constant between March 2007 and August 2008​, then the number unemployed​ _______.
Mathematics
1 answer:
Luba_88 [7]3 years ago
4 0

Answer:

Increased.

Step-by-step explanation:

In March 2007, the unemployment rate was 4.4 percent. In August 2008 was 6.1 percent. We need to remember that the unemployment rate equals the number of unemployed people divided by the people in the labor force.

Now, if we consider that the labor force remained constant during this period of time (according to the problem) then this would mean that the number of unemployed people actually increased during this period of 17 months.

You might be interested in
PLS HELPPPP MEEEE I NEED WORK SHOWN TOO
Elanso [62]

The series of operations for each case are listed below:

  1. GCF / GCF / GCF
  2. GCF / Grouping
  3. Quadratic trinomial
  4. GCF / Quadratic trinomial
  5. Difference of squares
  6. Difference of cubes / Quadratic trinomial
  7. Sum of cubes
  8. GCF / Quadratic trinomial
  9. GCF / Difference of squares

<h3>How to applying factor properties to simplify algebraic expressions</h3>

In algebra, factor properties are commonly used to solve certain forms of polynomials in a quick and efficient way and whose effectiveness is sustained on all definitions and theorems known in real algebra. In this problem, we should explain and show what factor properties are used in each case:

Case 1

5 · x · y³ + 10 · x² · y                                             Given

5 · (x · y³ + 2 · x² · y)                                            GCF

5 · x · (y³ + 2 · x · y)                                              GCF

5 · x · y · (y² + 2 · x)                                              GCF

Case 2

6 · z · x + 9 · x + 14 · z + 21                                   Given

3 · x · (z + 3) + 7 · (z + 3)                                       GCF

(3 · x + 7) · (z + 3)                                                  Grouping

Case 3

a² + 2 · a - 63                                                       Given

(a + 9) · (a - 7)                                                       Quadratic trinomial

Case 4

6 · z² + 5 · z - 4                                                     Given

6 · [z² + (5 / 6) · z - 2 / 3]                                      GCF

6 · (z - 1 / 2) · (z + 4 / 3)                                         Quadratic trinomial

Case 5

81 · m² - 25                                                           Given

(9 · m + 5) · (9 · m - 5)                                           Difference of squares

Case 6

8 · x³ - 27                                                               Given

(2 · x - 3) · (4 · x² + 6 · x + 9)                                  Difference of cubes

4 · (2 · x - 3) · [x² + (3 / 2) · x + 9 / 4]                      Quadratic trinomial

Case 7

27 · b³ + 64 · z³                                                      Given

(3 · b + 4 · z) · (9 · b² - 12 · b · z + 16 · z²)               Sum of cubes

Case 8

2 · w³ - 28 · w² + 80 · w                                         Given

2 · w · (w² - 14 · w + 40)                                          GCF

2 · w · (w - 4) · (w - 10)                                             Quadratic trinomial

Case 9

200 · a⁴ - 18 · b⁶                                                     Given

2 · (100 · a⁴ - 9 · b⁶)                                                GCF

2 · (10 · a² + 3 · b³) · (10 · a² - 3 · b³)                       Difference of squares

To learn more on polynomials: brainly.com/question/17822016

#SPJ1

7 0
1 year ago
Find the mode of this data set:<br> 31, 30, 32, 31, 30, 31, 32,<br> 33, 30, 31, 31, 30, 32
MariettaO [177]

Answer:

31 is the mode of the data as it appears 5 times

4 0
3 years ago
On a factory floor, 65 out of every 140 toy robots is defective. What percent of the toy robots are defective? Round your answer
tester [92]

Answer:

65/140

as a percentage is 46.43

hundredth rounding

46.4

Step-by-step explanation:

8 0
2 years ago
Angle 1 is 50 degrees. Which angle is also 50 degrees?
solong [7]

Answer:

Step-by-step explanation:

angle 1= 50 degrees

x angle=50 degrees

cross multiply and you get and you get <u><em>1</em></u> as your answer

4 0
3 years ago
WILL GIVE 5 STARS TO THE PERSON WHO HELPS WITH AN EXPLANATION!!! If the 32 ounce bottle is 20% more than the typical bottle, how
Aleks04 [339]
So if 32 oz is 20% more than the average bottle, you multiply 32 by .20 which gives you 6.4. This means that the 32 oz bottle is 6.4 oz more than the regular bottle. Furthermore, 32 - 6.4 = 25.6 so that's how big the typical bottle is.
3 0
3 years ago
Other questions:
  • Explain two different ways to simplify 6/12
    7·2 answers
  • What is 10,000 more than 25,953
    13·2 answers
  • 4c^2-8c-1=0 complete the square round to nearest hundredth
    7·1 answer
  • Which equation has a slope of 3 and a y intercept of 4?
    11·2 answers
  • What is 1+1? help plz​
    12·2 answers
  • Identify the correct statement for the given figure.
    13·1 answer
  • What is 3 divided by 11/12
    9·2 answers
  • Help!!!!!!!!!! TYSM if you answer this!!!!!!!!!!!
    11·1 answer
  • 2. The following data set shows the number of points scored by rugby team in season of matches: (5
    15·1 answer
  • Need help plz with this if nobody don’t mind
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!