3x - 1 = 9x + 2
3x (-3x) - 1 (-2) = 9x (-3x) + 2 (-2)
-3 = 6x
-3/6 = 6x/6
-1/2 = x
hope thsi helps
1. Irrational
2. Irrational
3. Rational
4. Rational
Answer:
the probability of no defects in 10 feet of steel = 0.1353
Step-by-step explanation:
GIven that:
A roll of steel is manufactured on a processing line. The anticipated number of defects in a 10-foot segment of this roll is two.
Let consider β to be the average value for defecting
So;
β = 2
Assuming Y to be the random variable which signifies the anticipated number of defects in a 10-foot segment of this roll.
Thus, y follows a poisson distribution as number of defect is infinite with the average value of β = 2
i.e

the probability mass function can be represented as follows:

where;
y = 0,1,2,3 ...
Hence, the probability of no defects in 10 feet of steel
y = 0


P(y =0) = 0.1353
Answer:
C.1/16
Step-by-step explanation:
When a coin is tossed 4 times, the number of outcomes are:
2^4 = 16
So,
From the outcomes, only one outcome will be when there will be all heads
So, the probability will be:
One out of the 16 outcomes
Hence, the probability of a coin landing on heads all 4 times is:
C.1/16