When you're counting inclusively, you subtract the numbers and add one. Here, it's 89-52+1=38 numbers.
The sum of all the even integers between 99 and 301 is 20200
To find the sum of even integers between 99 and 301, we will use the arithmetic progressions(AP). The even numbers can be considered as an AP with common difference 2.
In this case, the first even integer will be 100 and the last even integer will be 300.
nth term of the AP = first term + (n-1) x common difference
⇒ 300 = 100 + (n-1) x 2
Therefore, n = (200 + 2 )/2 = 101
That is, there are 101 even integers between 99 and 301.
Sum of the 'n' terms in an AP = n/2 ( first term + last term)
= 101/2 (300+100)
= 20200
Thus sum of all the even integers between 99 and 301 = 20200
Learn more about arithmetic progressions at brainly.com/question/24592110
#SPJ4
Answer:
∠ABC = 50°
Step-by-step explanation:
Since this is a parallelogram, opposite angles are congruent.
Therefore, ∠D ≅ ∠B
∠D = 38° + 12°
∠B = 38° + 12°
∠B = 50°
∠ABC = 50°
Answer:
![Var(X) = E(X^2) -[E(X)]^2 = 4.97 -(1.61)^2 =2.3779](https://tex.z-dn.net/?f=%20Var%28X%29%20%3D%20E%28X%5E2%29%20-%5BE%28X%29%5D%5E2%20%3D%204.97%20-%281.61%29%5E2%20%3D2.3779)
And the deviation would be:

Step-by-step explanation:
For this case we have the following distribution given:
X 0 1 2 3 4 5 6
P(X) 0.3 0.25 0.2 0.12 0.07 0.04 0.02
For this case we need to find first the expected value given by:

And replacing we got:

Now we can find the second moment given by:

And replacing we got:

And the variance would be given by:
![Var(X) = E(X^2) -[E(X)]^2 = 4.97 -(1.61)^2 =2.3779](https://tex.z-dn.net/?f=%20Var%28X%29%20%3D%20E%28X%5E2%29%20-%5BE%28X%29%5D%5E2%20%3D%204.97%20-%281.61%29%5E2%20%3D2.3779)
And the deviation would be:

I Think he weighs 27 pounds now correct me if i'm wrong