Places and religion because it’s good to get to know everybody’s religious life. Also you can explore the history behind and why they still believe in it to this very day
Answer:
<h2>The answer is option D- Selective breeding.</h2>
Answer: 1000 nm
Explanation:
Bacteria are the type of biological cell. They constitute a large domain as they are found every where on the earth.
These are few micrometer in length which means 200-700nm . It depends on the type of the bacterial cell. The bacteria are the first organism that appeared on earth.
They are found in water, on land, desert, hydro thermal vent, snow et cetera. These are variable in shape.
Oxidative phosphorylation requires a proton gradient.
- Cells use enzymes to oxidize foods in the metabolic pathway known as oxidative phosphorylation, electron transport-linked phosphorylation, or terminal oxidation, which releases chemical energy to create adenosine triphosphate.
- This happens inside mitochondria in eukaryotes. The majority of the energy required for biosynthesis, maintaining a healthy ion balance, and mechanical effort is provided by oxidative phosphorylation, which is the principal source of ATP in higher animals.
- A succession of proteins and electron carriers in the mitochondrial membrane, as well as the electron transport chain, are all involved in the process of oxidative phosphorylation.
learn more about Oxidative phosphorylation here: brainly.com/question/13254827
#SPJ4
Answer:
The best possible outcome for the cell in the event of mis-copied mRNA is for the mis-copied sequence to code for the same amino acid as the correct sequence would have done
Explanation: The process of transcription during which the message in DNA is transcribed as genetic codes into mRNA is sometimes not error proof. Synthesized mRNA is usually transported into the cytoplasm where the codes are translated into protein.
Each genetic code which is usually a sequence of 3 purine/pyrimidine bases codes for an amino acid. However, due to the degenerate nature of the genetic codes, more than one codon can code for the same amino acid. The degenerate nature is caused by the fact that there are 64 possible codons and there are 20 amino acids in nature. For example, UUA, UUU and UUG can be coding for the same amino acid in nature.
Hence, if a mistake occur during transcription, the best possible scenario for the cell is that the mis-copied sequence will end up coding for the same amino acid(s) as the correct correct sequence would.