Answer:
When the rule of 70 applies to population, dividing 70 by the percentage of population growth should equal the time (in years) that the population needs to be double (option A)
Explanation:
The rule of 70 is useful to calculate the time in which a variable of any type can be duplicated. The calculation is done by dividing the number 70 by the percentage of growth of the variable.
<u>If the rule of 70 is applied to the population, it is possible to calculate, based on its growth rate, the time that population would need to double</u>.
If, for example, the growth rate of a population is 3 percent:
70 / 3 = 23,33
This indicates that a population, with a growth rate of 3% would need about 23,33 years to double.
The water cycle is the correct answer, the water evaporates, then condenses into clouds, and turns into rain and precipitation occurs.
1. Non random mating
In genetic equilibrium individuals must mate at random. However, in many species, individuals select mates based on heritable traits, such as size, strength, or coloration, a practice known as sexual selection.
2. Small population size
Genetic drift does not have major effects on large populations but can affect small populations. Thus evolutionary change due to genetic drift happens more easily in small populations.
<span>3. Immigration or Emigration
Individuals who join a populations may introduce new alleles into the gene pool. Likewise individuals who leave may remove alleles from the gene pool. Any movement of individuals into (immigration) or out of (emigration) a population can disrupt genetic equilibrium, a process know as gene flow.
4. Mutations
Individuals who join a populations may introduce new alleles into the gene pool. Likewise individuals who leave may remove alleles from the gene pool. Any movement of individuals into (immigration) or out of (emigration) a population can disrupt genetic equilibrium, a process know as gene flow.
5. Natural Selection
if different genotypes have different fitness, genetic equilibrium will be disrupted, and evolution will occur.</span>
Answer:
False, the body systems have to work together to maintain homeostasis
Hope this helps!