Answer:
Average = 96
Step-by-step explanation:
Average = sum of terms/ number of terms
sum of terms = number of burgers sold
number of terms = number of visitors
d = number of days since Monday which is 7
burgers sold = 200d^3 + 542d^2 + 179d + 1605 substituting d with 7
burgers sold = 200(7)³ +542(7)² + 179(7) +1605
burgers sold =68600 + 26558 + 1253 + 1605
burgers sold =98016
number of visitors= 100d + 321
number of visitors= 100(7) + 321
number of visitors= 700+321
number of visitors= 1021
Average = 98016/1021
Average = 96
Answer:

Step-by-step explanation:
The missing parameters are:
--- population
--- population mean
-- population standard deviation
Required

First, calculate the sample standard deviation




Next, calculate the sample mean 

So:

So, we have:



Calculate the z score




So, we have:

From the z table

So:

#just keep swimming I don’t know what you mean
The computation shows that the placw on the hill where the cannonball land is 3.75m.
<h3>How to illustrate the information?</h3>
To find where on the hill the cannonball lands
So 0.15x = 2 + 0.12x - 0.002x²
Taking the LHS expression to the right and rearranging we have:
-0.002x² + 0.12x -.0.15x + 2 = 0.
So we have -0.002x²- 0.03x + 2 = 0
I'll multiply through by -1 so we have
0.002x² + 0.03x -2 = 0.
This is a quadratic equation with two solutions x1 = 25 and x2 = -40 since x cannot be negative x = 25.
The second solution y = 0.15 * 25 = 3.75
Learn more about computations on:
brainly.com/question/4658834
#SPJ4
Complete question:
The flight of a cannonball toward a hill is described by the parabola y = 2 + 0.12x - 0.002x 2 . the hill slopes upward along a path given by y = 0.15x. where on the hill does the cannonball land?
Answer:
Volume of right circular cone is 388.43 in³
Step-by-step explanation:
Height of circular cone = 16.8 in
Radius of circular cone = 4.7 in
We need to find Volume of right circular cone
The formula used for calculating volume of a right circular cone is: 
Putting values and finding volume

So, Volume of right circular cone is 388.43 in³