1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Cloud [144]
3 years ago
14

This problem has been solved!

Mathematics
1 answer:
Lelechka [254]3 years ago
4 0

Answer:

The problem is an example of d.) multinomial population

Step-by-step explanation:

A multinomial distribution is type of probability distribution that describes the distribution of more than two variables.

The properties of a multinomial distribution are:

  • There are <em>n</em> independent and repeated trials.
  • Each trial has two outcomes: Success of Failure.
  • Each outcome of a trial is same.

In the case provided the variables are:

<em>X</em> = number of students in Business college

<em>Y</em> = number of students in Arts college

<em>Z</em> = number of students in Arts college.

The researcher wants to know if the proportion of the variables <em>X</em>, <em>Y</em> and <em>Z</em> has changed or not.

This is an example of multinomial distribution and the population is a multinomial population.

You might be interested in
A bag of jellybeans has 20 watermelons jellybeans, 45 sour apple jellybeans, 30 orange jellybeans and 5 cotton candy jellybeans.
Ksju [112]
20/100 = 1/5



Add up the numbers (20, 45 , 30 ,5) then there are 20 watermelon flavoured ones so it will be 20/100=1/5
3 0
3 years ago
Convert x2 + y2 = 16 to polar form.
Dafna1 [17]
The Correct Answer is Option B 

r = 4

Ex. CONVERT 2 + 2 = 4 x 4 = 16 
6 0
4 years ago
Fill in the blanks. <br><br> sedrftgyuhihkgfndt7y
kvv77 [185]

HMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM

5 0
3 years ago
Read 2 more answers
B. A 50A by 35ft residential
MariettaO [177]

Answer:

1.13 food per square feet

Step-by-step explanation:

Given

Dimension: 50ft by 35ft

Servings = 1975

Required

Determine the amount per servings

First, we calculate the area.

Area = 50ft * 35ft

Area = 1750ft^2

Next, we calculate the amount per square foot.

This is:

Rate = \frac{Serivings}{Area}

This gives;

Rate = \frac{1975}{1750}

Rate = 1.13

7 0
3 years ago
What is the slope of a line if X intercept is three and Y intercept is five
Ber [7]

Answer:

y=5x-15

Step-by-step explanation:

4 0
3 years ago
Other questions:
  • Dustin bought a dvd player that was markrd doen from 150 to 100 find the percent of decrease
    11·1 answer
  • What is the decision regarding the differences between the observed and expected frequencies if the critical value of the chi-sq
    13·1 answer
  • Frank finished 65% of his math homework before dinner. If this amount represents 26 problems,How many problems will Frank need t
    14·1 answer
  • If three points (5,1) , (1,-1) and (m,4) are collinear.Find m​
    7·1 answer
  • 31 plz I tried already and got it wrong<br> I don't know how to do it
    12·2 answers
  • If a math book is 4,458 grams what is the mass of 4 math books in kilograms
    11·2 answers
  • What is 25 divided by 2350
    6·2 answers
  • Which of the following series are convergent?
    10·1 answer
  • The radius of a cylindrical construction pipe is 3.5ft . If the pipe is 38ft long, what is its volume? Use the value 3.14 for (p
    8·1 answer
  • I accidentally clicked the top answer which one is correct?! Please let me know!! Thank you!
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!