Answer:
10x2 + 2x + 13.
Step-by-step explanation:
10x2 + 3 - (-2x - 10) (Note you have to put the -2x - 10 in brackets).
= 10x2 + 3 + 2x + 10 (Distributing the negative over the brackets).
= 10x2 + 2x + 13.
Using PEMDAS, we know that we must solve what’s in the perentheses first so: 25/5 + 7 - (4x3) = 25/5 + 7-12. Next, we simplify 25/5 because that is division so now it is 5+7-12. Now you add 7 to 5 to get 12 and then subtract 12 so your answer is now zero.
Step-by-step explanation:
It is required to find the expressions that are equivalent to 4-x. We can also write it as :
Option (b) : (4-x) = 4+(-x)
Option (c) : (4-x) = -x+4
Hence, the correct options are (B) and (C).
Answer:
Step-by-step explanation:
-5x² - 6 = -4x
-5x² + 4x - 6 = 0
a = -5 ; b = 4 ; c = -6
Discriminant = b² - 4ac
= 4² - 4*(-5)*(-6)
= 16 - 120
= -104
roots = 
![=\dfrac{-4+\sqrt{-104}}{2*(-5)};\dfrac{-4-\sqrt{-104}}{2*(-5)}\\\\=\dfrac{-4+2i\sqrt{26}}{-10} ; \dfrac{-4-2i\sqrt{26}}{-10}\\\\=\dfrac{(-2)[2-i\sqrt{26}]}{-10} \ ; \ \dfrac{(-2)[2+i\sqrt{26}]}{-10}\\\\=\dfrac{2-i\sqrt{26}}{5} \ ; \ \dfrac{2+i\sqrt{26}}{5}](https://tex.z-dn.net/?f=%3D%5Cdfrac%7B-4%2B%5Csqrt%7B-104%7D%7D%7B2%2A%28-5%29%7D%3B%5Cdfrac%7B-4-%5Csqrt%7B-104%7D%7D%7B2%2A%28-5%29%7D%5C%5C%5C%5C%3D%5Cdfrac%7B-4%2B2i%5Csqrt%7B26%7D%7D%7B-10%7D%20%3B%20%5Cdfrac%7B-4-2i%5Csqrt%7B26%7D%7D%7B-10%7D%5C%5C%5C%5C%3D%5Cdfrac%7B%28-2%29%5B2-i%5Csqrt%7B26%7D%5D%7D%7B-10%7D%20%5C%20%3B%20%5C%20%5Cdfrac%7B%28-2%29%5B2%2Bi%5Csqrt%7B26%7D%5D%7D%7B-10%7D%5C%5C%5C%5C%3D%5Cdfrac%7B2-i%5Csqrt%7B26%7D%7D%7B5%7D%20%5C%20%3B%20%5C%20%5Cdfrac%7B2%2Bi%5Csqrt%7B26%7D%7D%7B5%7D)