Because there will eventual reach a point where the food or some other necessity runs out and instead of growth continuing, it stays at relatively constant.
The correct sequence is; Glycolysis-pyruvate-acetyl CoA-krebs cycle-electron transport chain.
Glycolysis is a sequence of reactions for the breakdown of glucose to two molecules of pyruvic acid under aerobic conditions, Krebs cycle is a series of chemical reactions used by all aerobic organisms to release stored energy through the oxidation of acetyl-CoA derived from carbohydrates, fats, and proteins into carbon dioxide and chemical energy in the energy carriers, while electron transport chain involves a series of complexes that transfer electrons from electron donors to electron acceptors via redox reactions and couples this transfer with the transfer of protons across a membrane.
Answer:
here's your answer
Explanation:
the estimated maximum energy efficiency of photosynthesis is the energy stored per mole of oxygen evolved, 117/450, or 26 percent.
Consequently, plants can at best absorb only about 34 percent of the incident sunlight. The actual percentage of solar energy stored by plants is much less than the maximum energy efficiency of photosynthesis. An agricultural crop in which the biomass (total dry weight) stores as much as 1 percent of total solar energy received on an annual areawide basis is exceptional, although a few cases of higher yields (perhaps as much as 3.5 percent in sugarcane) have been reported. There are several reasons for this difference between the predicted maximum efficiency of photosynthesis and the actual energy stored in biomass. First, more than half of the incident sunlight is composed of wavelengths too long to be absorbed, and some of the remainder is reflected or lost to the leaves